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Summary of work done:

During the two-year project period, we have worked on several aspects of Health Usage

and Monitoring Systems for structural health monitoring. In particular, we have made

contributions in the following areas.

. Reference HUMS architecture: We developed a high-level architecture for

health monitonng and usage systems (HUMS). The proposed reference

architecture is shown in Figure 1 [2]. It is compatible with the Generic Open

Architecture (GOA) proposed as a standard for avionics systems [3]. It consists of

six layers that may be logically divided into three parts. The lower part deals with

sensors and low-level processing and control. The middle part deals with system

level processing and maintenance. Finally, the upper part is related to the

application software and interfacing with the user.

User Interface

Application Software

I Hizh-level Interface

High-level Sensor IProcessing and Control

HUMS kernel Services

I Low-level Interface

Low-level Sensor

Processing and Control

Figure I. HUMS Reference Architecture

. HUMS kernel: One of the critical layers of HUMS reference architecture is the

HUMS kernel. We developed a detailed design of a kernel to implement the high

level architecture [2,3]. The kernel provides the software infrastructure needed to



build HUMS architectures. It is designed with the objective of supporting

scalability, robustness, and flexibility in HUMS. It offers the functionality needed

to build a dynamic and robust distributed sensor system that is not usually offered

by a COTS operating system. In particular, it offers services to support the

following features.

• Dynamically add/delete/replace components such as sensors, services,

processes, processors, and other system resources.

• Monitor resources and processes during their operation to detect any

failures. It also has provisions to recover from process failures.

• Offer a hierarchical (i.e., logical) view of the system. This enables an

application or an end-user to be transparent to low-level details (such as

sensor Ids or number of sensors at a grid) and simply refer to high-level

components (e.g., data values from all grids covering left-wing).

• Avoid strict synchronization between data producers (sensors) and data

consumers (e.g., application/system processes). This enables to build more

flexible systems.

A block diagram of the HUMS kernel that we have designed and implemented is

shown in Figure 2. The kernel software is organized into five basic modules:

lifecycle services, naming services, relationship services, buffering services, and

monitoring & relocation services.

Figure 2. HUMS Kernel: A block diagram



. Prototype implementation of the HUMS kernel: We have implemented a

preliminary version of he HUMS kernel on a Unix platform. We have

implemented both a centralized system version and a distributed version. In the

centralized version, there is a single processor to which all sensors are connected.

The sensors are simulated by means of data generating processes.

In the distributed version, several processors in the system are connected using

Ethernets. TCP/IP is used as a means of inter-process communication.

In both cases, the relationship service is implemented using an Oracle database.

Alternately, it could have been implemented as a simple file service also. For the

administrator to interact with the lifecycle services, to add/delete

services/processes/sensors, a Java-based GUI has been implemented.

The sensors have been simulated by processes that emit signals at random (0-

20sec) intervals to the sensor-controller. The communication between the sensor

and the sensor-controller is implemented using UDP [4]. UDP was the chosen

protocol because it uses best-effort delivery and does not impose the overhead of

handshaking. This is similar to the real environment, where sensors produce

signals irrespective of whether the communication medium is able to
accommodate them or not. Additionally the sensors are not concerned about the

signals reaching the destination.

The sensor-controllers (SC) receive the signals from the sensors over a 20 second

period. Each SC performs a simple sensor fusion (averaging) of the signals from

each grid and transmits the signals to the buffering service that is located at a
well-known address. The SCs transmit the signals to the buffering service in

intervals of 20 seconds. The buffering service is located at well-known addresses

(i.e., the ip and port of the buffering service is known to the sensor-controllers).

The buffering service is duplicated. A primary buffering service and a secondary

buffering service run at different machines and both their addresses are known to
all the sensor-controllers. The communication between the sensor-controllers and

the buffering service is achieved using TCP [4]. A failure of the sensor-controller

to send signals to the buffering service would be interpreted as the failure of the

buffering service. When such a failure occurs, the sensor-controller sends signals

to another buffering service. The secondary buffering service is configured to

monitor the primary. When the primary is alive the secondary remains dormant,

but when the primary dies, the secondary becomes active. The primary has the

highest priority to handle signals, hence if the primary is restarted again, it

becomes active and the secondary shifts to the passive mode. Thus, the

communication protocol between the sensor-controllers and the buffering service

is provided with sufficient intelligence to determine failure of transmission of the

signals.

Currently, we are discovering means to improve the implementation so as to

achieve better performance and more robustness.



, SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory

Network) is a system that is found to be suitable to implement HUMS. For this

reason, we have conducted a simulation study to determine its suitability in

handling the input data rates in HUMS. The system incorporates two important

concepts: distributed and replicated shared-memory and insertion-ring network.

Each node (also referred to as a station, or a host processor) on SCRAMNet has

access to its own local copy of shared memory that is updated over a high-speed,

serial-ring network.

In order to analyze the performance of SCRAMNet in the structural health-

monitoring environment, we have simulated the basic functionality of the system

in terms of three major components---the links, the nodes (stations), and the data

sources (sensors). Using the simulator, we measured the impact of factors such as

the number of nodes, the load on the system, the error rate, and data filtering on

message delay [4]. Figure 3, for examples, shows the effect of load on average

delay.

The results from this study are presented at the 2002 Western Multiconference

[4]
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Figure 3. Effect of Load on Average Message Delay

Architectural specification. Architectural decisions have a great impact on the quality

of software systems. When acquiring a large software system that will have a long

lifetime within the acquiring organization, it is important that the organization develop an

understanding of the requirements for such architectures. This understanding allows an
organization to more formally specify its requirements as well as evaluate the candidate
architectures. A formal software architectural evaluation provides several benefits

including:

• Allows the early detection of problems with the candidate architecture. It

provides early insights into product capabilities and limitations.



• Allows for examination of the goodness-of-fit of the candidates to the

functional needs as well as the performance requirements like reliability,

scalability and maintainability of the desired systems.

• Formal specification and evaluation processes will force development

organizations (vendors/bidders) to develop better and more suitable
architectures (since they know the evaluation metrics ahead of time).

During the HUMS development and analysis process, we have realized that unless

properly planned from the beginning, the task of evaluating the candidate
architectures could become quite difficult or even impossible. Certainly, when we

consider the complexity and criticality of HUMS, and the large number of

candidate architectures that can be expected from the bidders (due to the size and

importance of the project), the evaluation problem could be quite difficult. This

also means that there is a potential for a wide range of specification formats,

nomenclature, different degrees of details about the candidate architecture, etc.

Sometimes the data needed for evaluation may be hidden in hundreds of pages of

architectural descriptions provided by the bidders. In order to make the task of the

evaluator much more effective, we have arrived at a combined specification and

evaluation methodology. In other words, the specification methodology takes into

account the evaluation process and accordingly decides on the specification

formats. Once the candidate architectures are submitted in the prescribed format,

the evaluation process becomes rather straightforward. Our findings are

summarized in the attached document [5].
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DISTRIBUTED SCALABLE ARCHITECTURES FOR HEALTH

MONITORING OF AEROSPACE STRUCTURES

Ravi Mukkamala, Department of Computer Science, Old Dominion Universi_, Norfolk, Virginia

Abstract

In recent studies, monitoring the health of

certain aerospace structures has been shown to be a

key step in reducing the life cycle costs for
structural maintenance and inspection. Since the
health of the structures ultimately determines the

health of a vehicle, health monitoring is also an

important prerequisite for improved aviation safety.
In this paper, we present the preliminary results
from our ongoing project on designing and

evaluating architectures for integrated structural
health monitoring. It has three major contributions.

First, we present a survey of existing work. Second,
we identify the characteristics of architectures for

integrated health monitoring. Finally, we suggest
evaluation metrics for a few characteristics.

Introduction

In recent studies, monitoring the health of

certain aerospace structures has been shown to be a
key step in reducing the life cycle costs for
structural maintenance and inspection [1]. Since the
health of the structures ultimately determines the
health of a vehicle, health monitoring is also an

important prerequisite for improved aviation safety.

Much of the existing work in this area concentrates

on using sensor fusion methods for monitoring

single structures or components [2]. As the systems
at the component level mature, there is a need to
move these architectures from component level

monitoring to system level monitoring.

One of the fundamental characteristics of the

aviation sensor systems is that they are distributed

across the physical structure of the aircraft. In
addition, due to the high safety and reliability

requirements placed on these systems, distributed

architectures are a natural choice for these systems.

Distributed architectures have the capability to offer

the desired reliability and robustness in addition to
other features such as scalability. However, they

also have the capability of creating high
communication overheads. In addition, they may
introduce new bottlenecks such as the network

bandwidth or synchronization requirements among
distributed components that are otherwise absent in

centralized systems. Hence, careful design and
evaluation of the distributed architectures is

necessary prior to adopting them for any health

monitoring application domain.

In this paper, we present a summary of

preliminary results from our ongoing project on
designing and evaluating architectures for

integrated health monitoring. Unlike other projects
that deal with developing operational systems for a

specific component, we concentrate at the higher
architectural issues.

The paper is organized as follows. Section 2

gives a brief review of the existing work in this
area. Section 3 describes different characteristics of
the architectures. Section 4 illustrates evaluation

measures for these architectures using two metrics -

--scalability and robustness---as examples. Finally,
Section 6 summarizes the current project status and

describes future work.

Background
There has been considerable work in the

structural health monitoring systems (SHMS). In

this section, we survey some of the related work.
Much of the work in SHMS concentrates on

modular but centralized decision systems. For

example, the system developed by Kuduva et al [3]
consists of sensors, local preprocessors, a central

processor, and software for aircraft maintenance



andlogisticaldecisions.Whilethe localprocessing
andthe modularstructuraloffer flexibility to the
SHMS,thecentraldecisionsystemcouldstill bea
bottleneckin scaling the systemto different
functions.

Opennessalsoseemsto bea favoredfeature
for SHMS architectures[4]. The JAHUMS
architectureemphasizesscalabilityandsurvivability
[5]. It is basedon openstandardswith as much
COTScomponentsaspossible.Sincetheyemploy
standardhardwareandsoftwareinterfaces,it iseasy
to insertnewtechnologiesor portto othersystems.
The opensystemconceptis alsoadoptedin the
implementation of Integrated Mechanical
Diagnosticsystem(IMD) [6].Thesystemisusedto
monitortheusageandhealthof helicopters.While
softwareiswellorganizedasmodules,thehardware
iscentralized.

Anotherrelatedareawheremuchwork has
been done is distributedsensor management.
Whenevermultipledistributedsensorsareinvolved
in monitoringa structureor anobject,it wouldbe
necessaryto fuseoutputof severalsensorsto make
adecision[7,8].Lopezetal [7] presentathree-level
sensoragentarchitecturefor the managementof
sensors in a distributed system. Here, the
communicationdetailsare hiddenin one level,
while the task planningdetails are hidden in
another.Finally, the task executiondetailsare
includedin thethird level.Clearly,thearchitecture
provides a modular structure.However, the
scalabilityissuesarenotsoobvious.

In a distributedsensorarchitecture,oneof the
keyissuesis thedistributionof sensoroutputto one
or moreprocessorsthatprocess(e.g.,fuse,filter,
etc.) the output. In terms of tools to support
distributedprocessingin an aviationcontext,the
RingBufferedNetworkBusor RBNB[9] is agood
example.Here,abufferisableto receiveandcache
inputfromexternalsourcessuchassensors.In turn,
the processingunits can readthe data from the
buffer in an asynchronousfashion.While the
RBNB is more suitable for a geographically
distributedsystemwith datatransferredusingthe
TCP/IP,the conceptmust be equallyapplicable
evenfor processingof sensorswithin anaircraft.
Anothertoolthatusessimilarideasfor information
distributionis InformationBus [10]. Like RBNB,
theInformationBusis intendedfor geographically
distributed processingelements.However, its

underlyingconceptssuchasthedemanddrivenvs.
event driven data flow, request/replyvs.
publish/subscribeparadigms,and the idea of
adaptersfor legacysystemsareequallyapplicable
forhealthmonitoringsystemarchitectures.

Networking sensors using wireless
communication is another area that is fast

developing in both commercial and military
environments [11,12]. In the context of commercial

applications, wireless communication between
sensors and detectors is used to track personnel,

machinery, inventory, etc. Similarly, wireless
sensor networks are used for terrain mapping in
hazardous environments or during wars. Both

systems are adaptable and scaleable. The wireless

system concept coupled with sensors and

computing elements resulted in a highly flexible
and scaleable architecture. Sensor networking also

provides robustness when the processing elements
associated with the sensors can reconfigure among
themselves whenever a fault is detected among the

sensors.

Finally, in the area of architectural evaluations,
there have been several contributions, mostly in the
context of software architectures. But none of these

directly address the SHMS architectures. In [13],
the authors describe a comprehensive framework
for evaluation of software architecture. They have

developed COMPARE, an operational framework,
to evaluate and compare architectures. The
framework consists of several steps including

eliciting objectives or goals of the evaluation,

expressing the goals in terms of scenarios,

qualitative and quantitative evaluation of the
interactions (or impact) between the scenarios and
the architectures, and a multivariable decision
model to make final decision on the choice of the

architectures. In [14], the authors discuss a

scenario-based approach to evaluate software
architecture. In this approach, scenarios are used to

gain information about a system's ability to meet
users' needs. Each scenario is expressed in terms of

one or two sentences and describes a specific user

expectation or need from the system. The scenarios
are developed for all relevant stakeholders of the

system under consideration. In this paper, we are
interested in developing more quantitative
evaluation metrics for the architectures.



Characteristics of Health Monitoring

System Architectures

Before we start designing architectures or start

developing architectural evaluation methods, we

should first identify the characteristics of a health
monitoring system mainly in the context of avionics

systems. Since any such architecture consists of
sensors, processors, interconnection networks,

storage, and software, we characterize the

architectures in terms of these components.
Following is a list of some important
characteristics.

• Scalability. One of the characteristics of the

avionics industry is the diversity in size. In

particular, the number of components that need
to be covered by health monitoring systems

changes from one aircraft to the other and from
one customer to the other. In fact, the same

customer, for the same aircraft, with a few

components monitored today, may decide to
expand the monitoring to several other

components (also an extendibility
characteristic). Similarly, the customer may
decide to increase the number of sensors per

component for increased reliability or fault-

tolerance. Generally, such decisions are taken
either due to reduction in the cost of technology

or due to a need for increased safety. Any
architecture on which the initial monitoring

system is built should be scalable so that the
additional sensors may be added to the existing

system. Similarly, while the frequency of
monitoring is at a low rate today, it may be
increased tomorrow. The chosen architecture

should be scalable so that it can handle the

additional data and processing load. Certainly,

this may require adding additional processing
power or communication bandwidths to the

existing system. The architecture should allow
such scale-up to take place in the system.

• Legacy Systems. Due to high investment cost,

aircrafts are being used for longer times [15].

Hence, several aircraft may need to be retrofit
with the new health monitoring systems to
reduce maintenance cost as well as offer

improved safety and reliability. This means that

the proposed architectures should be able to
utilize the sensor and processing systems

already in place in an aircraft. However,

additional sensors, processors, or
communication links, may be added for

additional safety. This may require the

development of some adapter software [10].
The architecture should allow such interfacing.

• Openness. While safety and reliability are the

primary concerns of the aircraft industry,
reduced costs are also a significant factor for

survivability and profitability. Today, it has
been well recognized that commercial off-the-

shelf (COTS) components are much cheaper

than proprietary custom-made software and
hardware. More specifically, the architecture

should have interface specifications that are
fully defined, available to the public, and

maintained according to some agreed upon
standard [4,6,16].

• Flexibility, The ability to change or react with
little penalty in time, effort, cost or performance

is often referred to as flexibility. One of the key
aspects of today' s computing and

communication technology is the continuous
change. The same thing is true of sensor

technology also. This means that any
architecture that is closely tied to today's

technology is likely to become obsolete in the
very near future. Hence, we need an

architecture that is easily adaptable to newer
technologies, faster processors, more accurate
data-rate sensors, etc. In addition, it should be

able to incorporate newer sensor fusion and

processing algorithms with higher CPU and I/O
requirements, and tighter timing requirements.

• Robustness. Almost all avionics systems

require high robustness to component failures
due to the rigorous safety requirements. In fact,

the architectures should be designed with the
robustness in mind. Certainly, distributed

systems have much higher potential to be robust
than centralized systems. In addition, since
there could be thousands of sensors in an

aircraft, it is also likely that some of them may

fail or malfunction during operation. However,
such failures should not prevent the rest of the

system from operating. In the case of replicated
sensors, the architecture should be able tolerate

the failure of a few replicas. Failure of a few

data links or processors should not disable the

entire system. In other words, fault tolerance as



well asfault isolationshouldbebuilt into the
architecture.
Extendability.Theeasewith whicha system
or componentcanbe modifiedto increaseits
storageor functionalcapacityis definedas
extendability.Since the health usageand
monitoringtechnologyis at its infancy,it is
likely to undergoseveralchangesin the next
fewyears.Whiletheinitial systemhavestarted
with healthmonitoringof fuel tanks[17] and
engines[6,18],theeffortsto expandto other
structuresis well underway[4,19].Hence,the
proposedarchitecturesshouldbeamenableto
extendingthecoverageto newercomponents,
andto addingmoreaccurateorreliablesensors.
The architectureshouldallow newer sensor
processing algorithms (implemented in
hardwareor software)to be addedto the
existingsystems.
Intelligentmonitoring. A healthmonitoring
architectureshouldbe intelligentenoughto
distinguishbetweendataandinformation.For
example,an architecturethat is simply a
collectionagentfor sensordatawill not likely
havewideapplicability.Theuseris morelikely
to be interestedin overall health of the
componentratherthantheindividualdatafrom
eachsensor.Similarly,supposeanabnormality
hasbeensensedinacomponent,andit hasbeen
reported/recordedalready.The sensormay
continueto send the samedata until the
componentis fixed, which occupiesboth
communicationbandwidthandstorageyetadds
very little value in terms of information.
Similarly,ongoingcollectionof sensingdata
for anominallyoperatingcomponentaddsvery
little informationto thedataset.An intelligent
architectureshouldbecapableof filteringout,
or reducing,suchredundantdata.

Metrics for Architectural Evaluation

Whenever we are presented with a set of health
monitoring system architectures, we need to

evaluate them with respect to the given objectives.
There are more qualitative evaluation methods

[16,20] in practice today than quantitative methods.

Unfortunately, qualitative metrics are prone to

individual subjectivity. For this reason, in our

current work we concentrate on developing

quantitative measures. Such measures are more
rigorously defined and hence are more convincing
and useful. In this section, we discuss ways to

quantitatively define metrics that are otherwise used

only in qualitative sense. Due to space constraints,
we only discuss two metrics in detail.

In developing the metrics, we assume a health
monitoring architecture to contain the following

components.
• Sensors (SN) that generate signals (analog or

digital) or data.

• Processors (PR) that process the data or signals

to generate final and/or intermediate output
• Communication links (or networks) (CN)

that carry data (or signals) from sensors to

processors, processors to processors, processors
to storage units, or storage units to processors.
The nodes through which external users can
access the data are also modeled as processors.

• Software (SW) that processes raw data and
intermediate data (e.g., sensor fusion).
Communication software is used for data

communication.

• Processes (PS) that execute on processors to
carry out the functionality of the software

• Storage (ST) or I/O units that store the
observations or results.

(Since we are only dealing with a high-level
view of the health monitoring system, we do not

include the main memory or cache as components.)

We now use the model to develop quantitative
metrics for evaluation.

Scalability. There are several definitions for

scalability. An informal definition that is generally

accepted in distributed systems is as follows. "A
system or an algorithm is scalable with respect to a

given parameter if its performance does not degrade
drastically with the change in the parameter values

within the given bounds [21]." In general, the term

drastically is understood as "non-linearly." For
example, consider the case of SMPs or Symmetric

Multiple Processor systems [22]. Here, several

processors share a common memory. Clearly, the
system is not scalable beyond a certain number of

processors as the shared memory becomes the
bottleneck. Accordingly, increasing the number of



processorswill no longerproducethe needed
decreasein executiontimedueto increasein the
numberof processors.Ontheotherhand,MPPsor
MassivelyParallelProcessors[22], whereeach
elementhasbothprocessingandlocalmemoryand
the elementsareconnectedin an hypercube,are
much more scalablesince there is no shared
memory.In thecaseof healthmonitoringsystems,
the main objectiveis to receivesensoroutputs,
processtheoutputs,andwhennecessarygenerate
outputseitherfor furtherprocessingor for storing.
Clearly, if there is a dedicatedlink betweena
processorand a sensor,thenthe communication
link will no longerbea bottleneck.If a processor
wereto periodicallypoll a sensorfor output,then
theprocessorcouldbecomeabottleneckdueto the
overheadof periodicpollingof severalsensorsthat
havebeenassignedtoit.

Scalabilityanalysisandbottleneckanalysisare
closely relatedto each other. In particular,
scalability measuresdetermine the degree of

matching between a given computer architecture
and the applications [22]. In our case, the sensor

processing and storage algorithms are the key
algorithms. They mainly involve processing and

data communication activities. Following are seven

quantitative definitions of scalability that could be
used in this context.

SCI: If the number of sensors is increased from s to

a's, and to maintain the same overall response time
(or some other performance measure) the number

of processors are to be increased from p to b'p,
then the scalability factor is defined as SC1 = ofo.
Here, it is assumed that the average output per

sensor as well as the processing speed remain

unchanged. When SCI=I, it means that there is a
linear relationship between the number of sensors

and the number of processors. An alternate
definition could be the ratio of incremental change
in the number of sensors to the incremental change

in the number of processors. Then SC1 = As/Ap.

This measures the slope of the s versus p graph.

For example, if the number of sensors is
increased from 100 to 120, and we had to increase

the number of processors from 10 to 12, then
SC1=1.2/1.2 or 1.0. This shows that there is a linear

relationship between s and p. If we use the alternate
definition, then SC1=20/2 = 10.0. In other words,

for every increase of 10 sensors, we need to

increase the number of processors by 1. In general,
for any given architecture, the value of SCI will

vary over the range of input parameters, and will
not be a constant over the entire range. In other

words, the above values may only be valid at
s=100, and need to be computed for other values of
s also.

Depending on the relationship between s and
p, we may also define other metrics that use other

functions of s and p in computing SC1. For

example, we can define SC 1 as A(log s)/A(log p).

SC2: If the number of sensors is increased from s

to a's, and to maintain the same overall response
time the communication link bandwidth is to be

increased from c to b'c, then the scalability factor is
defined as SC2 =a/b. Here, it is assumed that the

average output per sensor as well as the processing

speed remains unchanged. Alternately, we can
define it as the ratio of incremental change in the
number of sensors to the incremental change in the
interconnection network bandwidth. Then, SC2 =

As/dc.

For example, if the number of sensors is
increased from 100 to 120, and we had to increase

the link bandwidth from 2 Mbps to 2.2 Mbps, then

SC2=1.2/1.1 or 1.09. Using the alternate definition,
SC2=20/0.2 =100. As before, value of SC2 will

over the range of its input parameters.

SC3: If the rate of output from each sensor is
increased from x to a'x, and to maintain the same

overall response time the processor speed is
increased from y to b'y, then the scalability factor
is defined as SC3=a/b. Alternately, it may be

expressed as the ratio of the incremental change in
number of sensors to the incremental change in the

processor speed. Then, SC3 = Ax/Ay.

For example, if the output data rate per sensor

increased from 100 bytes to 150 bytes, and we had
to increase the processor speed from 20 MIPS to 25

MIPS, then SC3=1.5/1.25 or 1.2. Using the
alternate definition, SC3= 50/5 = 10.0.

Similar metrics could be defined using other

factors such as the size and frequency of sensor

outputs, the processing cost of sensor outputs, etc.



SC4: An alternate way to evaluate an architecture

is to compare its performance against a reference or
standard idealized architecture. For example, if

Tt(s,n,c) is the average response time (or some such
metric where low is better) on the idealized

architecture and T(s,n.c) is the average response

time on the given architecture, then scalability of

the given architecture may be defined as SC4 =
Tt(s,n,c)/T(s,n.c). Larger the value of SC4, more

scalable is the given architecture. (Here, s, n, and c,

represent the number of sensors, the number of
processors, and the interconnection network

capacity, respectively.) This type of comparative

approach is taken for comparing memory page
replacement algorithms in operating systems
[Silberschatz98]. Similar approach is taken while

evaluating parallel system architectures [Hwang93].

SC5" Based on Gordon Bell's definition [Bell92],

we can classify the distributed health monitoring
architectures in terms of three categories: size-

scalable, time scalable, or problem scalable.

A size-scalable health monitoring architecture

is one that has a scaling range from a small to a

large number of resource components---processors,
interconnection network, and the storage. The

expectation is to achieve linear improvement in

performance as the size is increased linearly. For

example, by doubling the number of processors we
should be able to double its performance. Often,

doubling the number of processors (or the

processing speed) needs to be accompanied by
corresponding increase in the bandwidth of the
interconnection network. There may be a need to

double the I/O bandwidth as well as the memory.

Certainly, we need to take into account the cost,
efficiency, and affordability in attempting to

achieve size-scalability in an architecture. Using
this definition, when the number of processors is

increased from p to a'p, and we observe a

performance improvement from q to b'q, then
SC5=b/a. Here, the performance metric is such that

high is better. We can define a similar metric when
low-is-better metric such as response time or cost is

used.

SC6: A generation or time sealable health
monitoring architecture is one that can scale with

the advances in component technology. So, when

faster processors or faster interconnection links are
available, we should be able to use the same

architecture to build systems [21]. In general, all

computer characteristics must scale proportionally:

processing speed, memory speed and size,
interconnection bandwidth and latency, I/O, and
software overhead in order for an architecture to be

useful for the health monitoring applications. For

example, when processor speed is increased from x
to a'x, and the performance (say high is better
metric) is increased from y to b_, then scalability

may be defined as SC6=b/a. Alternately, we can use

SC6 = dy/Ax definition.

SC7: A problem scalable health monitoring
architecture is one that can work even when the

number of sensors is increased. For example, if the
number of sensors is increased from s to a's, and

the corresponding performance (where low-is-
better) has changed from x to b'x, then SC7=a/b.

Clearly, the above three types of scalability---

size, generation, and problem, are not completely

independent of each other. Similarly, the resources°
--processors, interconnection networks, memory,
and storage, are also not independent of each other.

While evaluating an architecture, we need to take
this fact into consideration.

Robustness. Let us now look at a second metric,

robustness. Typically, robustness is defined as "The
measure or extent of the ability of a system, such as

a computer, communications, or data processing
systems to continue to function despite the
existence of faults in its component subsystems or

parts." System performance, however, may be
diminished or otherwise altered until the faults are

corrected [23, 24]. This is a critical factor for the

health monitoring architectures.
A health monitoring architecture is expected to

have several functionalities. Some functionalities
will be low-level functionalities such as ensuring

that sensor data reaches its first level processor, or

that a processor can write its data at its assigned

storage unit. It may have some high-level
functionalities such as delivering the status of a

structure (probably computed by a sensor fusion
function and stored on a disk) to an end user. There

may be some intermediate functionalities such as



ensuringthataprocessedsensordataisdistributed
to severalprocessorsexecutingsomemonitoring
functions.

Indefiningtherobustnessof sucharchitecture,
wesimplydonotcomputeasinglemetric.Instead,
weneedto expressit in termsof theoffered
robustnesstodifferentfunctionalities.Sinceweare
referringtofunctionalities,thereisanassumption
herethatwehavemadeamappingoftheintended
systemto thearchitecture.Forexample,wecan
definethefollowingmetricsof robustness.

R01: Probability with which a component's (e.g.,

engine's) status is recorded in the storage
successfully.

Of course, to evaluate RO1, we need to know

about the entire path from the sensors to the final

storage unit, the reliability of different components
on the path, the algorithms used along the path and

their robustness, etc. So the computation would
involve not only simple hardware reliabilities but

also software and algorithmic robustness.

R02" Probability with which a sensor algorithm is

guaranteed to receive inputs from different sensors

of a component within a given interval.

Metrics such as R02 are relevant to guarantee
that the outputs from a sensor fusion algorithm are

correct since its inputs are consistent (or timely).

R03" Probability with which the status of at least k

out of m (m>_k) components will be available in the

storage for the user.

To illustrate this metric, let us consider a

case where a user needs a guarantee that at least two

out of the following three components' status are
always available: engine, rotor, and wings. Suppose
the ROI metric for each of the three individual

statuses is 0.95. However, an engineer needs to
know the status of at least two of the three to

determine the status of the overall aircraft. The

probability with which the engineer can determine
the aircraft status (in this case) is indicated by R03.
If the SHMS architecture provides completely

independent systems for processing the three
statuses, then RO3 would be 0.99. On the other

hand, if the SHMS uses exactly the same system

(i.e., data links and processors) from processing to

storage of the three statuses, then RO3 would be
0.95. In all other cases, RO3 would be between

0.95 and 0.99. In other words, while RO1 focuses at

individual component level, R03 deals with
subsystems and systems level status availability.

In general, in computing the robustness
metrics, we need to model the architecture in terms

of the reliabilities of the individual components and

their interdependencies. In particular, more details
are needed as to how a specific system is being

mapped to an architecture, and the reliability of the
individual components. Often, time guarantees (as
in R02) are to be combined with failures to
determine the robustness of different functionalities.

Several metrics such as RO1- R03 may be

defined for a specific application domain and for a
given set of architectures. We are currently, in the

process of defining such metrics at different layers
of the health monitoring architectures.

Conclusion and Future Work

In this paper, we presented a summary of

preliminary results from our ongoing research on
development and evaluation of architectures for

structural health monitoring. Here, we identified
several characteristics of such architectures.

Certainly, having distributed control and being
scalable are the primary characteristics. In addition,

features such as robustness, openness, and
flexibility are also required. We have also

illustrated how quantitative (rather than qualitative)
metrics may be developed to evaluate these

architectures. Scalability and robustness are used as

examples for the illustration of the ideas.

One of the main objectives of our project is to

develop tools that will help users in choosing
appropriate health monitoring architectures for their

specific applications. Currently, we are dealing with
the characterization and evaluation issues. Once

these issues are well understood, we will develop

alternate architectures to test the developed
evaluation methods.
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Abstract

In recent studies, monitoring the health of

certain aerospace structures has been shown to be a
key step in reducing the life cycle costs for

structural maintenance and inspection [ll. Since the
health of the structures ultimately determines the

health of a vehicle, health monitoring is also an

important prerequisite for improved aviation safety.
In collaboration with NASA Langley Research

Center, we have been developing architectures for
health and usage monitoring (HUMS) of aerospace
structures [2]. In this paper, we describe a key

component of the distributed architectures, the
HUMS kernel. The contributions of this paper are

three-fold. First, we describe the functionality of the
kernel in terms of the services it offers to the layers

above it. Second, we discuss several design issues

of the kernel components. Finally, we analyze the

kernel design in terms of its scalability.

Introduction

In recent studies, monitoring the health of

certain aerospace structures has been shown to be a
key step in reducing the lifecycle costs for structural

maintenance and inspection [I]. Since the health of
the structures ultimately determines the health of a

vehicle, health monitoring is also an important

prerequisite for improved aviation safety. The need

for developing architectures for integrated structural
health monitoring has been discussed in [2].

In collaboration with NASA Langley Research

Center, we have been investigating some of the key

characteristics of architectures for health and usage

monitoring (HUMS) of aerospace structures. This

resulted in a preliminary version of HUMS

reference architecture (Figure 1). It is a layered
architecture facilitating scalability, robustness,

flexibility, and maintainability.

One of the key components of this architecture

is the HUMS Kernel layer. The layer offers several
basic services needed by a dynamic health

monitoring system that are otherwise not available
through a COTS operating system (or kernel). In

this paper, we describe this layer in detail.

The paper is organized as follows. In Section
1, we describe the HUMS reference architecture

proposed by our group. Section 2 describes the
functionality of the HUMS kernel. In Section 3, we
discuss several design alternatives for the kernel

components. Section 4 discusses the scalability
aspects of the kernel design. In Section 5, we give a

brief outline of the current implementation, Finally,
Section 6 has some final conclusions and future

work.

HUMS Reference Architecture

The proposed reference architecture is shown
in Figure 1. It is compatible with the Generic Open

Architecture (GOA) proposed as a standard for

avionics systems [3]. It consists of six layers that
may be logically divided into three parts. The lower

part deals with sensors and low-level processing
and control. The middle part deals with system

level processing and maintenance. Finally, the

upper part is related to the application software and
interfacing with the user.

The sensor-layer (hardware) consists of signal
emitters (sensors) that are representative of physical
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Figure 1. HUMS Reference Architecture

attributes such as temperature and pressure at a

particular location (grid) on a structure.
The low-level sensor processing and control

layer (predominantly hardware) would have the

ability to interact (turn-off, turn-on, and fetch
signal) with the sensors. It would also include any
analog-to-digital conversion needed for some of the

sensors. It may include some simple fusion

algorithms implemented in hardware or software. In
essence, the lower part of the architecture offers
services related to sensor data and control.

The HUMS kernel contains the infrastructure

components to provide a robust, dynamic, and
maintainable distributed sensor system.

The high-level sensor processing and control

layer has the capability to control (via low-level

sensor controllers) groups of sensors. In addition, it
offers some complex fusion and integration
routines. HUMS kernel would constantly monitor

the processes in this layer to enhance the reliability
of the system.

The application software layer consists of

several installation or domain specific software

needed by the end-user.
Finally, the user interface offers interface to

the end-user of the system. In case of HUMS, it
could be the on-board staff such as the pilot or the

ground staff such as engineers.
In this paper, we concentrate on the kernel

layer of the architecture.

HUMS Kernel: Functionality

HUMS kernel offers the functionality needed

to build a dynamic and robust distributed sensor
system that is not usually offered by a COTS

operating system. In particular, it offers services to

support the following features.

• Dynamically add/delete/replace
components such as sensors, services,

processes, processors, and other

system resources.

• Monitor resources and processes

during their operation to detect any
failures. It also has provisions to

recover from process failures.

• Offer a hierarchical (i.e., logical) view

of the system. This enables an
application or an end-user to be

transparent to low-level details (such
as sensor Ids or number of sensors at a

grid) and simply refer to high-level
components (e.g., data values from all

grids covering left-wing).

• Avoid strict synchronization between

data producers (sensors) and data

consumers (e.g., application/system
processes). This enables to build more

flexible systems.

In general, it is designed with the objective of

supporting scalability, robustness, and flexibility in
HUMS. In this section, we describe the basic

services offered by the kernel.

A block diagram of the HUMS kernel that we

have designed and implemented is shown in Figure
2. The kernel software is organized into five basic

modules: lifecycle services, naming services,

relationship services, buffering services, and
monitoring & relocation services. We will now



discussthefunctionalityofeachof themodulesin
detail.

Lifecycle Services

HUMS is a dynamic system in the sense that

new sensors may be added when need arises,

additional components may be covered by sensors,
and failed sensors may be replaced or removed. In
addition, there may be a need to regroup sensors or

replace them when newer technologies become
available. The lifecycle services module is

responsible for managing these changes. Basically,

it keeps track of the lifecycle of a sensor, a

component, or a service from the time it is first
added, configured, and used to the time it is

ultimately replaced or removed from the system. It
interacts with the relationship services to store and
retrieve information about the sensors and other

components in the system. Similarly, it interacts
with the naming services to obtain an internal name
when a new component (or sensor) is added to
HUMS.

This module is also responsible for initially

starting processes (both service and kernel) and for

restarting failed processes. It interacts with the

monitoring and relocation service in monitoring the
processes that it is responsible for. In case it detects

failure of a process, it interacts with the cloner

component of the monitoring & relocation service
to restart the process.

In addition, it may keep track of the utilization

and state of system resources (e.g., processors and
network links) to determine where a process may be

executed or if it needs to be migrated to another

process for better performance.

Relationship services

This service provides the relationships among
various structural components (e.g., engine, left-

wing, right-wing, etc.) and the corresponding
HUMS elements (e.g., sensors, sensor-controllers,

processes, etc.). It provides an interface to store and
retrieve the relationship information. Suppose a

user (using an application program) wants to
retrieve all sensor values related to a specific

component such as a left wing, the application

program first needs to access the relationship
service to identify all sensors related to that

component. It can then access other components to
access the data. In summary, it is a database of all

Figure 2. HUMS Kernel: A block diagram



types of relationships and associations in the

HUMS system.

Naming Services

With thousands of sensors and hundreds of

components in a typical HUMS system, it is
necessary to assign structured names (e.g.,
hierarchical as in an [P address) for them. Naming

service generates internal names (or addresses) for

the sensors and components (and subcomponents).
A name is provided as and when the lifecycle

service requests for one providing all the necessary
details.

Buffering services

In a signal-driven system such as HUMS,
sensors are the elementary signal producers. Of

course, there may be several other processes (e.g.,
virtual sensors) that may process several physical

sensor values and generates a virtual sensor value to

be used by other high-level processes. Similarly,
there are several processes that act as consumers of

the generated signals (or data). In fact, one or more
consumer processes may consume signals from a

single sensor. In addition, the speed and timing of
the producers may not be synchronous with the

consumer processes. The buffering services acts as
the interface between producers and consumers.
Hence, both the producers (e.g., sensors, virtual

sensors, and sensor-controllers) and the consumers

(high-level processes) access the buffering services.
In addition to current data, it also stores historical

data.

Monitoring and Relocation Services

This module implements the basic features
needed to offer robustness in HUMS. Once this

module has been assigned the task of monitoring a

process (by registering the process), it periodically
checks the status of that process. It can check both
for liveness as well as for correct functionality. In

case a process is found to be faulty, it kills the

process and attempts to start another copy of the

process at the same processor. In case of a

processor failure, it will attempt to relocate all its

processes to one or more other processors. It makes
use of a cloner sub-module for the relocations and

restarts.

HUMS Kernel: Design Aspects

So far, we have discussed the HUMS kernel as

a single entity consisting of several components.
However, unlike the traditional operating system

kernels that need to be implemented as single
entities at all the nodes in a system, pieces of the

HUMS kernel can be implemented at different
nodes. Some of the nodes may have all the services,

and some may need just a few. In fact, as discussed

below, each component itself may be implemented
in a distributed manner among a set of processors.

Following is a discussion of these components and

some design choices in their implementation. The
stated choices are by no means exhaustive.

Lifecycle Services

This is an essential module to start processes
as well as restart them in case of failures. One of the

primary components of this module is the process
controller that exists either in each processor or in a

set of processors with a unique address. The process
controller starts processes (system and application)

at a processor at system startup. In addition,
whenever a process is killed, it restarts it with the
available executable code.

In addition to these basic functionalities, the

lifecycle services module may include the following
features:

• Monitor resource (e.g., CPU, memory,
and communications) utilization of

processes to check if they are
exceeding the expected values.

• Monitor the load on different

processors and if necessary
redistribute the load.

• Request copies ofexecutables from
cloner when local copies are

corrupted.

• Allow for processes from other

processors to be migrated to local

processor(s).

• Allow services (processes) to be

added, deleted, or modified as the

system evolves.

4



Inasimpleconfiguration,a lifecyclemodule
executinginoneprocessoris independentof
lifecyclemoduleexecutingatanotherprocessor.In
amorecomplexsystem,thelifecyclecomponent
couldbeimplementedasadistributedservice
wherelifecyclemodulesatdifferentprocessorsact
asasingleservice.Wehavenotinvestigatedthe
latterconfigurationindetail.

Relationship services

This is essentially a database of relationships

among various structural components and HUMS

components. This service is frequently used by the
lifecycle services to store and retrieve relationships.

In addition, most application software needs to
access this service for converting the logical view

of a user to the physical view of the HUMS system.
Several design choices are possible in implementing
this module.

• A simple choice is to implement it at a

single processor (the centralized
option). In this case, all other kernel
modules need to access this service

only at this processor.

• A more robust approach is to replicate
the module at a set of selected

processors. Each module would then
contain a copy of the entire

relationship database. Other kernel
modules can access this service at any

of the replicated locations.

• A more practical approach is to let a

group of processors that are either
geographically or logically related

share a relationship module that only
contains data related to the processes,

components, and sensors connected to
these processors. If necessary, the

partial database could be replicated at
a few processors in a cluster.

This module could receive requests such as

"retrieve all sub-components of the left-wing" or

"retrieve all grid-ids in a sub-component of the left-

wing" from high-level processes.

Naming Services

This module generates unique identifiers (Ids)

for all components, sub-components, services, and
sensors in HUMS. This is similar to services such

as a file system generating internal names to user

files in a typical computer operating system. It is
only called by the lifecycle services whenever a
new entity is to be entered into the system. As in the

case of the previous modules, there are a few
choices for this module also.

• A centralized naming service
executing on a single processor in the

system.

• Autonomous naming service module

executing in different parts of the
HUMS system. For example, a group

of related components might share one
name server.

• Wherever there is a lifecycle module, a

naming module also may be

implemented.

• For robustness, we may consider

replicated naming servers.

In general, the location and design choices for

naming module may be closely related to the
choices for lifecycle module.

Buffering services

This is a key component of the HUMS kernel.
As it is used in storage and retrieval of data

generated by the sensors, this is also the most
frequently accessed module under normal

operations

This module consists of three main

components: buffer controller, data server, and file
system. The buffer controller acts as the interface to

the buffering services. Other processes interact with
the controller to store and retrieve data. The buffer
controller sends data to the data server. Data severs

cache the data received from the controller (initially

generated by the sensors and virtual sensors). They
then send historical data to the file systems for

permanent storage.

One possible way to store and retrieve
information is discussed here.



Thesensors(S)generatedataandsendit to
sensor-controllers(SC).Thesensor-controllers
convertthesignalstodigitalform,optionallydo
somepreliminaryanalysis(e.g.,fusion),andsendit
tothebuffercontrolleralongwithidentifying
informationsuchassensoridentification,
timestamp,etc.Thebuffercontroller(BC)receives
thedataandforwardsit tooneof thedataservers
(DS)for buffering.Thedataserversbufferthedata
andforwardthedatatothefile systemsfor
permanentstorage.

Similarly,whenaprocesswishestoretrieve
data,it first accessesthebuffercontrollerthat
providestheprocesswiththelocationof thedata
serverof therequestingdata.Theprocessthen
accessesthedatathroughthedataprovider
componentof thedataserver.Therequestmaybe
finallyservicedbydataresidinginabufferorafile
system.

Thereareseveraldesignchoicesfor
implementingthismodule.

• Centralized versus distributed buffer
controller. In the centralized case, a

single buffer controller serves all

processes in HUMS. While this is

simple to design and implement, it
may not be suitable due to the
distributed nature of HUMS. The

distributed controllers could be either

autonomous (several buffer controllers

acting independently) or controllers
acting as agents for a system-wide
service.

The data servers could also be

centralized or distributed. But

typically, due to the distributed nature
of the data generators (sensors), the

distributed option is a natural choice.
Whether data servers are located close

to the data producers or the data
consumers is a design choice and

depends on specific application

domain. In any case, each data server
is autonomous.

The file servers could also be

centralized or distributed. Once again,

for robustness, load balancing, and
reduced communication load, it is

preferable to distribute the file servers.
These are truly autonomous units.

SC - Sensor-Controller

BC - Buffer Controller

13

S
1

Data 2

Data 1

DS - Data serve_

S - Sensors

FS - File System

Figure 3. Data storage using the Buffering Services
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• Forfault-toleranceandloadbalancing
purposes,abuffercontrollermaysend
thesamedatatooneor moredata
servers.Eachdataservermaysendthe
datato oneormorefile servers.

Sincethebufferingservicesmoduleis themost
frequentlyusedmodule,servicingdatastorageand
retrievalrequests,it isoneof theperformance
bottlenecksin thesystem.Forthisreason,itsdesign
andimplementationhastobetunedtothespecific
applicationneeds.

Monitoring and Relocation Services (MRS)

This module provides fault-tolerance for
essential HUMS components and services by the

use of polling and cloning. The poller is the main

component of the monitoring system. A process to
be monitored needs to be registered with the

monitoring system. In addition, the process should
also contain a listener component. The poller polls

all the processes in its list at regular intervals. Since
the monitoring process is not only concerned about
the status (live or dead) of a process but also about

its behavior (normal or faulty), the process should
maintain information about its behavior in some
variable. One mechanism to measure the normality

of behavior is the execution time. So a process
could maintain the time it took for executing a

specific chosen function in some variable that it
shares with the listener component. Thus, when the

poller polls a process, its listener component would
reply with the value in this variable. Since the

normal range of values of this variable is provided a

priori to the poller (at the time of registration), the
poller can decide whether or not a process is
behaving normally. When this value exceeds the

specified range consecutively several times, the

poller declares the process as being faulty and sends
a kill signal. On receiving the kill signal, the

listener kills the process. When a process is killed,
all resources held by it are also released.

On noticing that a process has been killed, the

local process controller will attempt to restart it

again. The poller once again attempts to poll it. In
case a poller cannot establish a connection with a

registered process, it makes a note of it in its log.

The second component of interest in MRS is
the cloner. The cloner maintains copies of

executable code of all processes registered with the
MRS. Whenever a process controller fails to start a

process or a process needs to be started at a new
processor, the process controller contacts the cloner.
The cloner then supplies the executable to start a

new process.

The third component is the redirector.
Whenever a process fails (or is killed), a new

process is restarted. The new process could also be
restarted at a new processor. The processes that
were in communication with the earlier process
now need to establish a connection with the new

process. But they need to know the process
identification (ID) and the processor address (e.g.,
IP address) where the new process is executing.

Since a process controller had earlier supplied this
information to the redirector component, it can

provide it to the requesting process. After getting
the process ID and processor address, the requesting

process can reestablish a connection with the
restarted process. There may be other mechanisms
to achieve the same.

In essence, the poller, the cloner, and the
redirector components achieve the objectives of the

monitoring and relocation services module.

Now let us briefly look at the design alternates

we may have in terms of the distribution of MRS in

the system.

• Certainly, a centralized MRS is not

practical even for systems with ten
processors. So we need to implement it
as a distributed service. Most likely,

several autonomous MRS modules

implemented in the system (e.g., one
per group of processors) would be a

practical solution.

• Since MRS contains the three

components discussed above, another
design choice is about the distribution

of these components. One choice is to
have all the three components as a unit

executing at one processor where the
MRS is to execute. However, this is



notanabsoluterequirement.In fact,it
maybedesirableto separatethecloner
componentfromtherestsinceit may
requirelargediskspace.Wecouldalso
haveafewclonersdistributedamong
theprocessorsinasystem.These
shouldbeaccessibleto all process
controllersin thesystem.Therecould
besomereplicationamongthecloners
(i.e.,thecodefor aprocessisavailable
atmorethanonecloner)sothatfault-
tolerancecanbeincorporatedatthis
level.

• Thepollershouldcertainlybelimited
topollonlyafewprocessesonthe
designatedprocessors.Thus, we may

have many more pollers in the entire

system.

• The redirection components are

needed only in the case of process
failures. Thus, only a few of these are

needed in the entire system.

In essence, while we logically consider MRS
as a single module, the actual implementation may

treat the three constituent components as

independent units.

To illustrate the usage of the kernel, let us
consider the case of adding a new service to
HUMS. The example is described in terms of the

type of the request, the pre-conditions, necessary

steps to execute, and the post-conditions.

Request: Add a new service
Pre-conditions:

• The user has a new service to add.

• The user knows the processor ID where the
service is to be added.

Steps:

• The user specifies the name and path of the

executable that accomplishes the service.

• The user specifies the processor ID where
the service will be made available.

• The HUMS kernel verifies the status of the

resident processor. The system transfers the

executable to the process controller where

the service is going to execute. The process
controller starts the process.

• The process is registered with the

monitoring and relocation service and a
copy of its executable is supplied to the
cloner.

• The name of the service and its relationship

with other components is recorded with the
relationship services.

Post-condition:
• The service is now available at the

specified processor.

HUMS Kernel: Scalability
One of the characteristics of the avionics

applications is the diversity in size. In particular, the
number of components that need to be covered by

health monitoring systems changes from one
aircraft to the other. In fact, the same aircraft with a

few components covered currently may decide to

expand the monitoring to several other components
in future. Similarly, the number of sensors coveting

a component may be increased for robustness. All
these factors demand a scalable HUMS kernel to

manage the increased load on the system.

We have designed the HUMS kernel with the
scalability and robustness in mind. To justify our

claim, we give a list of design decisions that lead to
this conclusion.

Buffering services is one of the key
components of the kernel. This is also likely to be a

performance bottleneck if not properly designed.
The following design decisions enable this

component to support scalability.

• The service is designed to be implemented
as autonomous units in different clusters.

Accordingly, even when the number of
sensors and/or the number of structural

components to be covered is scaled up, the

load can be handled by establishing
additional service units.

• Since each of the buffering service units

can incorporate multiple data servers
supporting buffers and file systems, it is

easy to make a unit more scalable by
increasing the number of data servers. If the
buffer controller is found to be a bottleneck,

using the relationship services, it is easy to



reassignthesensors(andsensor-
controllers)todifferentbufferingservices.

• Since the buffer controller, the buffers, and

the file servers are not closely tied in terms

of geographical proximity, there is much
more flexibility in assigning resources

when a system is scaled up.

Let us now look at another key component, the

monitoring and relationship services (MRS). This is
also designed keeping scalability in mind.

• MRS is also designed so that autonomous
service units may be established in the

system. For example, one cluster of

processors may have an autonomous MRS
unit dedicated to processes executing in the
cluster. As a consequence, when newer

structural components are to be added due

to scaling up, new MRS units can easily be
established without increasing the load on

the existing units.

• There is a single polling unit per MRS

covering all processes in that unit.
However, since it is not a computationally
intensive task, it should be able to scale up

when the number of processes to be
monitored is increased. The communication

load, however, may be significant. In case,

the system is scaled up in terms of the
number of monitored processes, then it is

easy to install a new MRS unit and reassign
the processes among the units.

• The cloning component may be

implemented as autonomous units, each
unit containing the executable code of

several processes. In case, the number of

processes in a system increases, additional
cloners could be installed and reassign

processes to cloners. The relationship
service and the lifecycle service may be
used for the reassignments.

The lifecycle service is another key component
of the HUMS kernel. It is only needed when

starting new processes/services or restarting failed

processes. In that sense, it is not a bottleneck under
normal operations. However, when system failures
are detected, it determines the system performance

during recovery. This module is also designed so it
can be implemented as autonomous units. Each

processor in the HUMS system has a lifecycle

component, the process controller. Each process
controller is autonomous. Thus, when a system is

scaled up and incorporates additional processors,
we simply need to initiate additional process

controllers at the processors. To monitor other
system resources such as the processors, we can

incorporate autonomous units (say, one per cluster)

to reassign processes under heavy loads. Thus, in a
scaled up system we need to increase the number of
such monitoring units to meet the higher demands.

The relationship service is also designed with

scalability in mind. For example, each cluster can
have its own relationship service module storing
related relationships. Thus. system scalability can

easily be achieved by adding additional relationship
service modules.

The naming service has a role to play only

when a new component/service is first introduced in
the system. Since this is not a routine operation, this
module can never be a bottleneck in achieving

system scalability.

HUMS Kernel: Implementation

We have implemented a preliminary
version of he HUMS kernel on a Unix platform. We

have implemented both a centralized system version
and a distributed version. In the centralized version,

there is a single processor to which all sensors are
connected. The sensors are simulated by means of

data generating processes.

In the distributed version, several

processors in the system are connected using
Ethernets. TCP/IP is used as a means of inter-

process communication.

In both cases, the relationship service is

implemented using an Oracle database. Alternately,
it could have been implemented as a simple file
service also. For the administrator to interact with

the lifecycle services, to add/delete

services/processes/sensors, a Java-based GUI has

been implemented.

The sensors have been simulated by

processes that emit signals at random (0-20sec)



intervals to the sensor-controller. The
communicationbetweenthesensorandthesensor-
controlleris implementedusingUDP[4]. UDPwas
the chosenprotocolbecauseit usesbest-effort

delivery and does not impose the overhead of
handshaking. This is similar to the real
environment, where sensors produce signals

irrespective of whether the communication medium
is able to accommodate them or not. Additionally

the sensors are not concerned about the signals

reaching the destination.

The sensor-controllers (SC) receive the

signals from the sensors over a 20 second period.

Each SC performs a simple sensor fusion
(averaging) of the signals from each grid and
transmits the signals to the buffering service that is
located at a well-known address.

The SCs transmit the signals to the buffering
service in intervals of 20 seconds. The buffering
service is located at well-known addresses (i.e., the

ip and port of the buffering service is known to the
sensor-controllers).

The buffering service is duplicated. A

primary buffering service and a secondary buffering
service run at different machines and both their

addresses are known to all the sensor-controllers.
The communication between the sensor-controllers

and the buffering service is achieved using TCP [4].

A failure of the sensor-controller to send signals to

the buffering service would be interpreted as the
failure of the buffering service. When such a failure
occurs, the sensor-controller sends signals to

another buffering service. The secondary buffering
service is configured to monitor the primary. When

the primary is alive the secondary remains dormant,

but when the primary dies, the secondary becomes
active. The primary has the highest priority to

handle signals, hence if the primary is restarted
again, it becomes active and the secondary shifts to

the passive mode. Thus, the communication

protocol between the sensor-controllers and the
buffering service is provided with sufficient

intelligence to determine failure of transmission of

the signals.

Currently, we are discovering means to

improve the implementation so as to achieve better
performance and more robustness.

Conclusion and Future Work

In this paper, we have summarized some
salient features of the HUMS kernel that we

designed as part of a project to develop HUMS
architectures. The kernel, with its five modules, is
shown to be scalable---it can function even when

the number of structural components, the number of

sensors, and the number of processes is increased.
The scalability is mainly achieved using
autonomous and distributed kernel components.

Robustness is achieved using replication of data and

processes. A preliminary version of the kernel has
now been implemented. We are currently in the

process of studying its performance and finding

means to improve it.
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1. Introduction

In recent studies, monitoring the health of certain

aerospace structures has been shown to be a key step in
reducing the life-cycle costs of structural maintenance and
inspection [l]. Since the health of structures ultimately
determines the health of a vehicle, health monitoring is an

important prerequisite for aviation safety. Due to the
safety and criticality of aviation systems, it is important
that the health and usage monitoring systems (HUMS) be

quite robust [2].
In collaboration with NASA Langley Research Center,

we have been designing a prototype HUMS. Since

flexibility is one of the desired features of these systems,
we have designed a kernel to support much of the system
functionality needed by different applications [3]. In this
paper, we describe our on going effort in designing and
prototyping a HUMS kernel to support robust and critical
health monitoring systems for aviation applications.

In a typical HUMS system, sensors generate data
(periodically/aperiodically) and send data to sensor
controllers. The monitoring system should reliably capture
and process the data, and inform higher level processes of

any anomalous behavior. We have explored the following
three techniques to achieve robust HUMS.

• Process and Data Reliability. This is used to
identify/isolate/rectify sofrware failures and signal
data. This reliability is provided by the HUMS kernel
services. The kernel services periodically monitor key

processes and provide mechanisms to correct failed

processes.
• Component Reliability. This is achieved by

identifying/isolating hardware and sensor failures

from disrupting the functionality of the system.
Component reliability is also ensured by distributing
and replicating important components of the system
and by ensuring proper filtering and isolating
mechanisms to prevent Byzantine failures from

reducing the functional effectiveness of the rest of the

system.
• Communication Reliability. This is achieved by

identifying the protocols/connectivity mechanisms
that can be applied under various scenarios to ensure

reliable communication among the various

components of the system. Depending on the
interactions among the components within a layer, the
reliable communication protocols may be different in

different layers of the system.

In the rest of the paper, we briefly describe the
HUMS kernel and its reliability mechanisms.

2. The HUMS Kernel

The HUMS kernel is a layer that acts as an interface
between the low-level sensors and sensor controllers and

the high-level user and application processes. Its services
include, but not limited to, the following:

• Reliability enhancement and Fault-tolerance
mechanisms (i.e., make the sensor/sensor-controller

failures transparent to higher layers)
• Bookkeeping (buffering and writing to a stable disk

to isolate higher layers from dealing with flow-control

problems associated with data generators)

• Dynamic system management (add/delete
components or processes dynamically at run time)

• Data querying at different levels of components and
component aggregation

The kernel is organized into five modules based on the

services they offer: Monitoring and relocation services,
buffering services, life-cycle services, relationship
services, and naming services. Among these five, only the
first three are relevant for this paper since they support
robustness.

2.1 Monitoring and Relocation Services

The monitoring and relocation services can be
provided with the following capabilities to improve the
reliability of the system. It can be configured to:
• Monitor the aliveness of key processes.

• Detect erroneous/faulty processes by comparing
available results from the processes with sets of

expected results for various input data. This may be

accomplished by remotely initiating self-diagnostic
procedures on key processes and by comparing the
actual results of the diagnostics with expected results.



• Detect failed processors and identify alternate
compatible processors to migrate key processes from
the failed processors.

• Interact with the lifecycle services to communicate
erroneous processes and provide the lifecycle service
with appropriate information to start&ill/restart new
and existing processes.

• Prevent cascading failure of processes by allowing
processes to look for alternate sources of data when
their current data sources (could be a process) are not
available.

This module interacts with the lifecycle services in

implementing the above reliability mechanisms.

2.2 Buffering Services

The buffering service provides the following services.

• It stores the signal data at multiple locations thereby
enhancing data availability. Such a mechanism is

advantageous if data in a buffer is corrupted, or if an
access path to a buffer is broken.

• It acts as a "data request broker" among multiple
producers of signal data and multiple consumers of
signal data that may not be synchronous in their
production or consumption of data. This facility eases
data access because consumers of data are not

required to be aware of the location of data.

• It makes the data available to the consumers, closer to

the point of consumption. Such a mechanism reduces
demand latency.

2.3 Lifecycle Services

The lifecycle service is also called the process
controller because it is provided with the capability to
start and kill services (processes). The lifecycle service
could provide one or more of the following services
depending on the reliability requirements of the system.

• It can act as a booting program to start processes in

sequence.
• It can monitor the CPU utilization of various

processes to obtain a snapshot of the system. This

snapshot can be compared against normally expected
system states. Any anomalies can be recorded for
further analysis, or the process controller can take
pro-active steps (if it is provided with sufficient
information) to kill or restart erroneous processes.

• The process controller can interact with the

monitoring and relocation service to improve the
reliability of the system.

Life cycle services can be distributed in different

subsystems, and can vary in complexity depending on the
critical nature of the processes in its subsystem.

3. Reliability Enhancements at Other Layers

The reliability of HUMS can be further enhanced through
mechanisms offered at other layers (besides the kernel

layer).

For example, at the sensor layer, if sensors are purely data
emitters, the only method of providing reliability is by
replication of sensors. Alternatively, sensors can be

equipped with data-link protocols and buffers to react to
retransmission requests and to store small amounts of
data. This would allow low-level sensor controllers to

request for data that could have been lost during
transmission.

Similarly, the low-level sensor-controller functionality
may be enhanced to improve overall reliability. For
example, the sensor fusion algorithms could takes into
consideration the non-availability of sensor data,

Byzantine signals (signals from truant sensors), and sensor
priorities (weights assigned to sensors depending on their
reliability or accuracy). This layer can also provide simple
error detection or correction facilities by padding sensor
data with parity bits, CRC, sequence numbers, etc.

Complex protocols that enable acknowledgements and
retransmission can be used to interface this layer with the

buffering service. This would minimize transmission
losses of data.

4. Conclusion

In this paper, we have briefly summarized our ongoing

work on building robust distributed structural health usage
and monitoring systems. In particular, we have described
the mechanisms used in the kernel layer to support robust

systems. We are currently working on enhancing these
mechanisms.
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Abstract

Monitoring the health of aerospace structures is an important

step in reducing the life-cycle costs of maintenance for
aircrafts. This is mainly achieved by using a network of

sensors distributed among the structural components of a

vehicle. The output from the sensors is then collected and

processed by several higher-level processes to determine the
structural health. In this paper, we report the results from our

study of determining the suitability of SCRAMNet, a
distributed shared memory network, in supporting the data

distribution functionality of a sensor network for structural
health. We have developed a simulation model of

SCRAMNet and used it to evaluate the effectiveness of

implementing a sensor network on top of SCRAMNet. The
performance of the system is primarily measured in terms of
message delay. The sensitivity of the system to the number
of nodes, the error rates, and data filtering factors is also

reported.

INTRODUCTION

In recent studies, monitoring the health of certain

aerospace structures has been shown to be a key step in

reducing the lifecycle costs for structural maintenance and
inspection [1]. Since the health of the structures ultimately
determines the health of a vehicle, health monitoring is also

an important prerequisite for improved aviation safety. The
need for developing architectures for integrated structural

health monitoring has been discussed in [2]. In collaboration

with NASA Langley Research Center, we have been

developing architectures for health and usage monitoring

system (HUMS) of aerospace structures [3].
One of the key ingredients of HUMS is the availability of

a network that can propagate the sensor values to all the

monitoring processes in a timely manner. The monitoring

processes are themselves distributed across the system and

probably at a ground station also. In addition, since a sensor
may be generating the same data (e.g., unchanged

temperature values), it would be effective to use a system
that can filter the unchanged data from being unnecessarily

transmitted. Of course, the applications should also be

designed taking this into consideration. SCRAMNet (Shared

Common Random Access Memory Network) [4,5] seems to

embed many of these features. It is also used in several real-

time applications [4,71.
In this paper, we study the suitability of SCRAMNet in

supporting the needs of HUMS. The paper is organized as
follows. In section 2, we provide some background
information on SCRAMNet and HUMS. Section 3 provides

a description of the simulation model adopted in our study.
In section 4, we discuss the results obtained from the

simulation studies and their implications. Finally, in section

5, we provide some conclusions and discuss future work.

BACKGROUND

In this section, we provide the background for
SCRAMNet and HUMS. Only the background essential to

understand this paper is presented. Interested readers may
refer to the references provided for additional information.

SCRAMNet [4,5,6,7,8]
SCRAMNet (Shared Common Random Access

Memory Network) incorporates two important concepts:
distributed and replicated shared-memory and insertion-ring

network [4, 9]. Each node (also referred to as a station, or a

host processor) on SCRAMNet has access to its own local

copy of shared memory that is updated over a high-speed,
serial-ring network. To utilize the replicated shared-memory

concept, distributed processes executing at a node map their
global data structures into the dual-port memory located at
the node [4,5]. Any time an application process updates a
data structure located in its local SCRAMNet memory, the

memory address and its contents are immediately (and
automatically) broadcast to all other nodes on the
SCRAMNet network. This automatic data transfer requires

no software intervention or backplane loading, enabling the

host computer to provide more processing resources to the

applications [4].

HUMS [1,2,31
In a typical HUMS (Health Usage and Monitoring

System), sensors are placed within the structural components
of an aircraft (the system being monitored). The sensors

could be analog or digital, generating periodic or aperiodic

output [1]. For example, a temperature sensor might

generate a digital signal periodically (say, once a second)



indicatingthecurrenttemperature.Alternately,thesame
sensormaysendasignalonlywhenthetemperaturedeviates
fromits previousvalue(orasetnorm)bycertainamount
[2,31.

In additionto thesensorsthatgeneratesignalsfrom
physicalobservations,HUMSmayalsohavevirtualsensors
(VS).A virtualsensorreadsdatageneratedby several
sensors,processesthedata,andgenerateshigh-leveldata
usefulfor otherapplicationprocesses.Also,theremaybe
severalapplicationprocessesrunningonthenodesthatread
thesensorvaluesandcomputefactorsdescribingthehealth
ofthestructures.

SIMULATION MODEL

In order to analyze the performance of SCRAMNet in the

structural health-monitoring environment, we have simulated

the basic functionality of the system in terms of three major

components---the links, the nodes (stations), and the data
sources (sensors). We now describe how each of the

components and their interactions are modeled.

The link

The link here represents a fiber optic, peer-to-peer

connection between two adjacent nodes in a SCRAMNet. It

has the following parameters: (i) Cable length, and (ii) Start-
and end-node identifiers. Since the transmission speed and

propagation speed are the same for all links, these

parameters are associated with the network, and not
specifically with a link.

During the period of message transmission, at the start-
node, the link component is considered to be busy. The
transmission time, of course, depends on the length of the

message (or packet) and the speed of transmission.
To simulate transmission errors, each link has a

"probability of error" (E) parameter to indicate the

probability of a transmitted messages being received
erroneously at the end-node due to transmission errors.
When a node receives an erroneous message, it simply

forwards it to its successor node. Finally, when the source
node receives the erroneous message, it retransmits the

original correct message.

The Node

The second component of the simulator is the node (or

station). Nodes are connected in a ring topology with links.
Each node contains three message queues: the transmit

queue (T-Queue), the retransmit queue (RT-Queue), and the
receive queue (R-Queue). Each of these queues is limited to

Ik-byte of messages (approximately 68 of 15-byte

messages) and work in a First-in-First-out (FIFO) fashion.
The T-Queue stores messages generated by the applications

at that station. These are the messages received by a node

from the local host, but not yet transmitted. The RT-Queue

is responsible for storing messages that are received from
the previous node on the ring and not yet retransmitted.

Finally, the R-Queue stores messages whose destination is
the local host.

Each node is modeled to perform the following three

basic functions. These are in line with the three data queues
described above.

1. Receive messages from local data sources.
2. Receive messages from the network (from

previous station).
3. Transmit received messages to the next node

on the ring.

The RT-Queue messages have the priority over the T-
Queue messages in transmission. However, if a new message

arrives at the RT-Queue while another T-Queue message is

being transmitted, the RT-Queue messages waits until the

outgoing link is available. According to the register insertion
protocol (of SCRAMNet), a node will certainly have a

chance to place a new message on the ring when it receives
its own previous messages from the network. Thus, the

maximum delay that a node has to wait to place its local

message on the ring, even under heavy load, is equal to the
length of the ring. This gives each node a chance to place a

new message on the ring at a maximum of a single ring

length delay.
We now consider the error-handling aspect of a node.

The error handling done at the node level is simple; a node

keeps a copy of the last message sent in a buffer. When the
node receives its message again from the network, it checks
whether or not the message error bit has been set. If the error

bit is indeed set, it simply retransmits the message. The

message will be retransmitted even if the error has occurred
after the destination correctly received it.

Data sources
In the simulation model, a data source (a sensor in

HUMS) is modeled as a simple entity that generates

messages periodically (with period 'T') and sends them to its
local node. A process at the node, after some initial

processing (not modeled here), writes it into a memory
location. The memory writes trigger a messages to

SCRAMNet. The assumption of periodic message

generation (as opposed to aperiodic messages) was simply to
concentrate on other factors of study (e.g., number of nodes,

distribution of load on the nodes, etc.). Each message is

divided into a set of 4-byte packets. The generation period is
varied between 1 and 60 microseconds.

Data filtering
SCRAMNet allows for data filtering to take place.

When data-filtering option is used, a station does not
transmit a value from a sensor unless it has changed from its

earlier value. In other words, if the temperature in an engine



partisconstantovertime,theneventhoughtheassociated
temperaturesensoris generatingthe value of the
temperatureandsendingit toitslocalnode,thestationdoes
nottransmitit sincethevaluehaschanged.Whenthisoption
is used,thedatasourcesappearto beaperiodicfor the
network.Thesetechniquesremovemuchredundancyin
casesof slowlychangingdata(suchastemperature).This
conceptissupportedinthesimulatorthroughadatafiltering
parameter(F)suppliedto thedatasource.Thisparameter
indicatesthepercentageofnewdata.Inotherwords,F=0.0
indicatesthatallgenerateddataisuniqueandthatthereisno
redundancy(e.g.,temperatureiscontinuouslychanging).On
theotherhand,F=0.4indicatesthatonly40%ofthedatais
redundantorrepeated.Thus,thetrafficonthenetworkdue
to thissourcewill bereducedby40%whendatafiltering
optionisusedinSCRAMNet.

Simulation parameters
The simulator is provided with the following run-time

parameters:
1.

2.
3.

4.

5.

6.

7.

The number of data sources (D)

The number of stations (S)
The simulation time to run (in nanoseconds)

(T)
The error factor (link errors) (E)

The filtering parameter (data filtering) (F)
The source interval (I)
The source distribution factor (SD)

Most of these parameters were discussed above. The
simulation time determines the time to run a simulator and is

expressed in microseconds. The last parameter, the source
distribution factor, describes how the data sources are

distributed among the nodes. When SD=I, the data sources

are equally distributed among all the nodes. So all nodes
have the same number of data sources. When SD=2, the data

sources are distributed equally among alternate nodes along
the ring. For example, if a node is assigned data sources,

then neither of its neighbors has data sources. This

parameter is used to study the effect of data distribution
(keeping the same total load on the network) on the

performance of the system.

RESULTS

In order to study the impact of implementing HUMS on
a SCRAMNet, we conducted several simulations. In this

section, we present a few of the results and summarize the
overall results. In all the simulation runs, we assumed the

following.

Equal spacing. Nodes are equally spaced along the
network. We assume that the distance between successive

nodes on the SCRAMNet ring network is equal. In

particular, we assume that the distance is 100 meters. In

addition, we assume the speed of propagation of the signal

on the ring to be 200 km/millisecond (or 2/3 the speed of

light). So the propagation delay is taken to be 0.5
microseconds along each link (between two successive

nodes) of the ring network.

Fixed size messages. We assume that each message is 15-

bytes long. Since SCRAMNet sends data as 4-byte fixed

length packets, each message is sent as four data packets. In

line with SCRAMNet's specification, we assume that it
takes 613 nanoseconds (or 0.613 microseconds) to transmit

a data packet at a node.

Message destination. To measure the message delay, we

assume the node that precedes the source node on the
network to be the destination. All results presented below

assume the message delay to be "the interval between the

instant a message arrives at a SCRAMNet node for
transmission to the instant the message is correctly read by

the station prior to the source node."

Network load. The network load is expressed in terms of

total number of messages per microsecond generated by all
the sources (cumulatively) on the network. This is indicated

by LF or load factor.

Source distribution. For simplicity, we assumed the
number of sources to be the same as the number of nodes on

the network. However, we also experimented with the effect
of load distribution on system performance by having
different source distributions. The type of source

distribution is indicated by SD. SD=I indicates that the

sources are equally distributed among all nodes. SD=2

indicates that every alternate node has two sources each.

Effect of system load on Message Delay
In order to determine the effect of total message load on

the message delay, we have conducted several simulation

experiments. However, in this paper we have included only
a few key results. Figure 1 shows average delay under
different network loads (in messages/microsecond). At low

loads (LF <0.3), since the queueing delay is insignificant,

the message delay is primarily dictated by the total length of

the ring (in microseconds), the transmission time per

message, and the number of nodes. In other words, it is

independent of the actual LF factor. For loads higher than
0.3, but lower than 0.5, the delay increases somewhat

linearly with LF. Beyond LF of 0.5, the delay starts

increasing non-linearly. The delay characteristics for LF
between 0.4 and 0.5 are shown in Figure 2. Under normal

condition, the time a sensor generates data to the time it is

received by all processes on the network seems to be quite



reasonable,lessthan150microseconds.However,the
behaviorunderpeakloadsneedsfurtherinvestigation.For
example,if aproblemhasdevelopedinoneofthestructures,
it is likelythatall sensorsassociatedwiththatstructure
wouldstartgeneratingdata.Thismayoverloadthenetwork.
Inothersituationswhereit iscriticalforthedatatoreachon
time,therecouldbeadelay.Wearecurrentlyinvestigating
the behaviorof SCRAMNetundersuch"bursty"load
conditions.
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Effect of Load on the Standard Deviation of

Message Delay

As shown in Figure 3, the standard deviation is almost

insignificant at LF less than 0.3. For loads up to 0.5, the
standard deviation is more or less constant. For LF>0.5, the

standard deviation increases---initially linearly and then

exponentially. This is explained by the fact that the length of

the transmission queue (T-Queues) and retransmission

queues (RT-Queues) increases with the load. Since the

length also varies significantly from node to node, the delay

also varies. These are adequate for most HUMS

applications. Once again, the behavior under heavy or
synchronous loads need further study. Standard deviation of

delay is also very critical in some HUMS. It basically
determines the distribution of delays between the time a

sensor generates data to the time its value is received by all

the other processes or nodes in on the network.

Std. Dev.of Delay vs. Total load
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Figure 3. Effect of Load on Standard Deviation of
Message Delay

Effect of Number of nodes

Figure 4 summarizes the effect of the number of nodes
on the average message delay. As the number of nodes is
increased, the total load also increases. At low loads

(LF=0.1 and 0.2) the increase is linear which is mainly due

to the increase in the ring length proportional to the number
of nodes. For medium loads such as LF=0.4 also, the

increase is somewhat linear with a higher slope. At high

loads, the increase is expected to be exponential. The
number of nodes is also a factor of great cost concern. Since

adding an additional node to the SCRAMNet means adding
an additional interface, it is also a cost consideration. In an

aircraft scenario, where weight is a concern, we do not

expect more than 20 to 30 nodes on a system. We expect

that many sensors may be interconnected through some local
multiplexing on to a single node. Thus, we do not expect this

to be a signification limitation in HUMS.

Effect of Network Errors

In SCRAMNet, whenever a massage is found to be in
error, the source detects the errors and retransmits the

message. Thus, errors increase retransmissions and hence
the load on the system. In addition, since we only measure

the time the message was submitted to the time it was

correctly received by the last node, retransmissions also

increase the overall message delay. Figure 5 summarizes the



effect of errors. At low loads, the effect is almost

insignificant. Since SCRAMNet uses fiber-optic networks,

we only considered low error rates. At high loads, however,

the effect of errors is more prominent.
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Effect of Data Filtering

As discussed in the background section, SCRAMNet

has a feature of not sending data unless it is different from

the earlier values. So when sensors report the same values

continuously, these will not be sent to all nodes. Only when

a reported (as written in its memory location) value has

changed, the value is sent as a message. Figure 6 illustrates

the effect of data filtering on average message delay. At low

and medium load, the effect of data filtering is not apparent.

However, at high loads, as the amount of filtered data (due

to repetitive values) increases, the average delay decreases

rapidly. Obviously, as the data filtering increases, the

amount of real load on the system decreases, and hence a

decrease in the average delay. Data filtering option is an

extremely important option in HUMS where the legacy

sensors periodically emit the same signals. In addition, if we

were to use low-level data processing prior to placing data

on the SCRAMNet, then the data filtering feature could be

used by suppressing some minor changes not to be

propagated on the network. We are still investigating

different uses of this feature in HUMS.
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Effect of adding an additional source/additional

node

One of the frequent design decisions that a HUMS

designer has to answer is: "If a new sensor is to be added to

the HUMS system, should we connect it to an existing node

or should we procure a new node, connect it to the

SCRAMNet and then connect the sensor to the new node?"

To answer this question, we made some preliminary runs.

The results are shown in Table 1. The table illustrates four

cases. For each case, the average delay is measured with

Case

I

II

III

IV

Orig. Conf. New SRC New SRC +
Added NEW node

99.1 139.8 167.8

106.5 126.8 143.4

121.6

304.1

131.6

314.2

141.0

324.7

Table 1. Effect of additional sources/nodes

original configuration, when a new source is added to an

existing node, and the new source added to a new node are

measured.

In case I, with 5 nodes and 5 sources, with each source

distributed to each node, the initial delay at LF=0.5 was 99. i

microseconds. When a new source (6 th source) is added to

one of the existing nodes, the delay increased to 139.8

microseconds, a 41% increase. However, when the new

source was added to a new (6 th) node, the delay was 167.8

microseconds, an increase of 69%. Similarly, in case II, with



10 nodes, adding the source to an existing node resulted in a

19% increase in delay, while adding a new node also
resulted in 35% increase. The increase was much less in case

III where 20-node system was considered. In case IV, with
10 nodes but an increased load factor (LF) of 1.0, the

increase was much less significant. We are still investigating
this behavior of the system. The effect of adding a new node

or a new source needs further investigation. Some of the

anomalies that we observed during the limited runs could

not be explained. We are currently investigating this issue.

CONCLUSION

In the current work, we have modeled and simulated
SCRAMNet for use as a backbone for a structural health and

usage monitoring system (HUMS). One of the main

concerns in a HUMS system is the ability of the system to
deliver the sensor data to all processes on the network in a

timely fashion. To this effect, we have represented the
sensors as data generators and simulated the systems under

various conditions. In particular, we observed the system
behavior under different load conditions, with different

number of nodes, different error rates, and data filtering
rates. The current results indicate that at loads of 0.3

messages/microsecond or less, the system behavior is very
stable. Even between loads of 0.3 and 0.5

messages/microsecond, the system behavior is predictable as

the delay changes linearly. Beyond these loads, the system
offers an average delays in the range of 350 microseconds

and higher. The variance in the delay is also high at high
loads.

As part of the future work, we plan to do a more rigorous
study of the system. In particular, we plan to also take into

account the effect of the processing load on the behavior of
a node. The question of having heterogeneous data sources
and their effect will also be answered. Another critical factor

that needs to be studied in depth is the behavior of
SCRAMNet when data bursts occur in HUMS. Whether the

system can handle the generated loads or a prior pre-local

processing at a structure needs to be done before putting the

signal on the SCRAMNet is to be investigated further.
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Abstract

Monitoring the health of aerospace structures is vital for aviation safety. In collaboration with
NASA Langley Research Center, we have been investigating some of the key characteristics of
software architectures for the health and usage monitoring systems (HUMS) for avionics. Due to

the criticality as well as the cost of these systems, it is essential that candidate architectures (say
from different vendors) be evaluated before a final architecture(s) is selected, developed, and

implemented. In this paper, we describe a methodology to specify architectures and to evaluate
them. Unlike most specification methods, we deal with the problem of specification and

evaluation in an integrated way. So evaluation is not an after thought, but bears substantial
influence on the specification method. We consider scalability, robustness, and flexibility as some
of the architectural evaluation metrics to illustrate the methodology. We divide the architectural

specification into three parts: functional, design, and performance. The paper describes the

methodology and illustrates it with examples from HUMS.

Keywords: Architectural evaluation, architectural specification, avionics, distributed systems,
flexibility, HUMS, performance evaluation, robustness, scalability, software architectures.

1. Introduction

Architectural decisions have a great impact on the quality of software systems. When acquiring a

large software system that will have a long lifetime within the acquiring organization, it is
important that the organization develop an understanding of the requirements for such
architectures. This understanding allows an organization to more formally specify its

requirements as well as evaluate the candidate architectures. A formal software architectural

evaluation provides several benefits including:

Allows the early detection of problems with the candidate architecture. It provides early

insights into product capabilities and limitations.

Allows for examination of the goodness-of-fit of the candidates to the functional needs as

well as the performance requirements like reliability, scalability and maintainability of the

desired systems.

This work is supported in part by NASA Langley Research Center, Hampton, Virginia, under research

grant NAG- 1-2279.
Contact author: E-mail: mukka@cs.odu.edu; Voice: (757) 683-3901; Fax: (757) 683-4900



Formal specificationand evaluationprocesseswill force developmentorganizations
(vendors/bidders)to developbetterandmoresuitablearchitectures(sincetheyknowthe
evaluationmetricsaheadof time).

In CollaborationwithNASALangleyResearchcenter,wehavebeendevelopingarchitecturesfor
systemstomonitorhealthandusage(HUMS)[10,11].Duringthisdevelopmentandanalysis
process,wehaverealizedthatunlessproperlyplannedfromthebeginning,thetaskof evaluating
thecandidatearchitecturescouldbecomequitedifficultorevenimpossible.Certainly,whenwe
considerthecomplexityandcriticalityof systemslikeHUMS[8],andthelargenumberof
candidatearchitecturesthatcanbeexpectedfromthebidders(duetothesizeandimportanceof
theproject),theevaluationproblemcouldbequitedifficult.Thisalsomeansthatthereisa
potentialforawiderangeof specificationformats,nomenclature,differentdegreesof details
aboutthecandidatearchitecture,etc.Sometimesthedataneededfor evaluationmaybehiddenin
hundredsof pagesof architecturaldescriptionsprovidedbythebidders.In orderto makethetask
of theevaluatormuchmoreeffective,wehavearrivedatacombinedspecificationandevaluation
methodology.In otherwords,thespecificationmethodologytakesintoaccounttheevaluation
processandaccordinglydecidesonthespecificationformats.Oncethecandidatearchitectures
aresubmittedin theprescribedformat,theevaluationprocessbecomesratherstraightforward.

In thispaper,wepresenttheproposedmethodologyandillustrateitsusagewithexamplesfrom
HUMS.Clearly,thisisawork-in-progressandweproposeto improvisethemethodologyasmore
experienceisgainedin itsusage.Thepaperisorganizedasfollows.In section2,weprovidea
backgroundonsometheearlierworkinsoftwarearchitecturespecificationevaluation,andafew
detailsonHUMSinavionics.In Section3,weprovidetheHUMSreferencearchitecturethatis
usedasabasisfor otherillustrationsin thepaper.Section4dealswiththespecification
methodologywithexamplesfromHUMS.In section5,wedescribethearchitecturalevaluation
methodology.Finally,section6summarizesourcurrentworkanddescribesourplansforthe
future.

2. Background

The work in software architecture specification [2,4,9] and evaluation [ 1,3,6] has been in progress

for many years. In this section, we summarize a few contributions this area.

Hilliard et al. [6] highlight the importance of a standardized terminology for architectural

description. The paper also provides insight into architecture evaluation using iterators and
discretes. Iterators are similar to questionnaires as in [1]. Discretes are questions whose answers

provide a simplified discrete scoring mechanism. This simplifies the aggregation and

interpretation of results.

Lloyd and Galambos [9] discuss in detail the requirements of an "Architecture Description
Language" to allow all professionals involved, to communicate and share concepts in a consistent

manner. It emphasizes the importance of domain specific reference architectures as assets that can

be brought to the table prior to system development. The paper also emphasizes the description of
reference architectures at different levels of abstraction to promote reusability.

Abowd et al. [ 1] categorize architectural evaluation into two major categories: "Questioning" and

"Measuring" techniques. Questioning techniques are further categorized into questionnaires,
scenarios and checklists, each of which differ in their applicability. Measuring techniques include



metricsthatprovidequantitativemeasuresof the variousperformancecharacteristicsof the
architecture.

Kazmanet al. [7] addresstheproblemof architectureevaluationby usingscenariosto gain
informationabouta system'sability to meetdesiredqualityattributes.This work addresses
brieflytheimportanceof commonsyntacticalarchitecturalnotationthatcanbeunderstoodbyall
partiesinvolvedin theevaluationprocess.

Muchof theworkin architectureevaluation(e.g.,[7]) dealwithevaluatingaspecificarchitecture
with respectto identifyingcritical modulesof an architectureso that moreeffort may be
expendedto makethemodulemoreefficient.Theevaluationsarealsousedto identifymodules
thatmaybeinvolvedin toomanyactivities(or scenarios)andhenceneedto bebrokenup into
severalmodules.More importantly,the paperslargelydiscussarchitecturespecificationand
evaluationasseparateactivities.In thispaper,wetaketheviewthatspecificationandevaluation
bedealtwithinanintegratedmanner.

Inregardtotheapplicationdomain,thehealthusageandmonitoringsystems(HUMS),
monitoringthehealthof certainaerospacestructureshasbeenshownto beakeystepin reducing
thelifecyclecostsfor structuralmaintenanceandinspection[8].Sincethehealthof thestructures
ultimatelydeterminesthehealthof avehicle,healthmonitoringisalsoanimportantprerequisite
for improvedaviationsafety.Theneedfor developingarchitecturesforintegratedstructural
healthmonitoringhasbeendiscussedin [10].Someof thekeycharacteristicsof HUMS
architecturesarescalability,robustness,flexibility,andmaintainability.Basically,in HUMS,the
structuralcomponentsof anaircraftareembeddedwithsensors.Thesensors(periodicallyor
aperiodically)sendsignalsindicatingthestateof astructuralcomponent.Thesignalsarereceived
andprocessedbyprocesscontrollerswhichin turnsendthemtohigherlevels.Sinceavionic
structuresarelarge,adistributedarchitectureissuggestedto managethesensors,thesignals,and
processesatall levels[10].Forfurtherdetails,thereadermayreferto [10,11].

3. HUMS Reference Architecture [10,11]

In this section, we describe the reference architecture that has been developed for HUMS [10,11].
The reference architecture is what the solicitor specifies in the request for proposals (RFP). We

use this as a basis for specifying and evaluating the candidate architectures.

The proposed reference architecture is shown in Figure 1. It is compatible with the Generic Open
Architecture (GOA) proposed as a standard for avionics systems [5]. It consists of six layers that

may be logically divided into three parts. The lower part deals with sensors and low-level

processing and control. The middle part deals with system level processing and maintenance.

Finally, the upper part is related to the application software and interfacing with the user.

The sensor-layer (hardware) consists of signal emitters (sensors) that are representative of
physical attributes such as temperature and pressure at a particular location (grid) on a structure.

Some sensors may be emitting periodic signals while others may be emitting signals

aperiodically. In addition, there could be heterogeneity in terms of the rates of emission, the types
of signals, etc. The upper layers hide the heterogeneities from the application processes.

The low-level sensor processing and control layer (predominantly hardware) would have the

ability to interact (turn-off, turn-on, and fetch signal) with the sensors. It would also include any
analog-to-digital conversion needed for some of the sensors. It may include some simple fusion



algorithms implemented in hardware or software. In essence, the lower part of the architecture
offers services related to sensor data and control.

User Interface ]

Application Software

I High-level Interface

High-level SensorProcessing and Control

] HUMS kernel Services ]

I Low-level Interface

I Low-level Sensor IProcessing and Control

[Sensors [

Figure 1. HUMS Reference Architecture

The HUMS kernel contains the infrastructure components to provide a robust, dynamic, and

maintainable distributed sensor system [111.

The high-level sensor processing and control layer has the capability to control (via low-level

sensor controllers) groups of sensors. In addition, it offers some complex fusion and integration

routines. HUMS kernel would constantly monitor the processes in this layer to enhance the

reliability of the system.

The application software layer consists of several installation or domain specific software needed

by the end-user. Finally, the user interface offers interface to the end-user of the system. In case
of HUMS, it could be the on-board staff such as the pilot or the ground staff such as engineers.

4. Specification Methodology

Keeping the architectural evaluation and its complexity in mind, we have divided the architectural

specification into three categories.

(i)

(ii)

Functional specification

Design specification



(iii) Performance specification

The functional specification is mainly intended to specify the functionality of a proposed
architecture. If an evaluator finds that a candidate architecture's functional specification is found

to be incomplete with respect to the reference architecture, then the candidate architecture is
immediately rejected. In other words, the functional specification acts as a necessary condition.

Once a candidate architecture meets the functional requirements, then the evaluator would look at
the design specification. It gives details of the modularity of the candidate architecture. An

evaluator uses it to check the functional coverage as well as organization and distribution of the
modules.

Finally, the performance specification is used to specify the performance of the candidate. It has

both quantitative and qualitative aspects. An evaluator looks at this in the final step.

4.1 Functional specification

The main goal of a functional specification is to describe the functionalities supported by a
software architecture. It describes, "What will be offered as a service" rather than "How it will be

designed or implemented." Since our final goal is to evaluate several proposed candidate

architectures, we use the functional specification as a first step in this process. In other words, by
separating the functional specification from the design and performance specifications, we

simplify the evaluation process. If a proposed architecture's functional specification does not
meet the basic functionalities required, then it is immediately rejected thereby avoiding the

unnecessary effort for further evaluation.

The HUMS reference architecture, as the name suggests, is only for reference. In other words, we
do not expect all the proposed candidate architectures to be identical to the reference architecture.

Some may propose architectures with more layers and some with less. In fact, some architectures
may distribute the specified functionalities in ways quite different from that in the reference

architecture. For this reason, we have designed the functional specification format so as to

evaluate the completeness of an architecture in spite of apparent deviations.

The functional specification consists of two categories of information. First, descriptive
information of the functionalities offered. Second, model coverage information in the form of
tables.

Descriptive Information. The first component of the descriptive information is the layered
architecture of the candidate. While the solicitor has provided the reference architecture (Figure

1), the bidder has provided the same for a candidate architecture (Figure 2). We use this as an

illustration in this paper. For each layer in the candidate architecture, a brief description of its

functionality is to be given. One of the reasons for using the term "functionality" rather than
"function" or "procedure" is to avoid the confusion of the latter term when used in the context of

design details or implementation. In other words, a functionality "A" specified in the architectural
specification may actually be implemented using functions "F1, F2 .... " in the actual design and

implementation. In this sense, functionality is at a much higher level than a function used in

programming. This part of the specification would have a list of functionalities and their

description for each layer.



Figure 2. Candidate Architecture
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Consider the candidate architecture in Figure 2. It has nine layers with several layers consisting of

two sub-layers. It also explicitly handles the infrastructure components such as processors and
networks.

In addition to the layered architectural diagram, the functional specification should clearly
describe the functionalities and interfaces offered by each layer. The interfaces could be described

using any standard interface definition languages. Since this is only an architectural evaluation,
and not a design and implementation stage, the definitions do not have to be very formal.

Certainly, they would not represent the functional (or procedural) calls that they generally refer to

at the design stage. Due to space limitations, we are omitting these details.

Coverage Information. The objective of this information is to ensure that the candidate
architecture covers the minimum functionalities provided in the reference architecture. This

information is captured in terms of two types of tables: Reference model coverage tables and
Candidate model coverage tables.

A reference model coverage table is prepared for each layer in the reference architecture. The
table lists all the functionalities specified by the reference architecture. For each listed

functionality, an equivalent functionality (probably with a different name and at a different layer)
in the candidate architecture will also be specified. If there is no equivalent, it will be left as

blank. An example reference model coverage table for HUMS kernel layer is shown in Table 1.

Reference architecture layer: HUMS Kernel

Reference Model

Functionality

Dynamic System
Management

Fault-tolerance

Candidate Model

Layer
Low-level System
Management Layer

Low-level

Performance

Monitoring Layer
Low-level System

Management Layer
Low-level
Performance

Monitoring Layer
Low-level System

Management Layer

Candidate Model

Functionali_

Life-cycle
Management

Monitoring
Services

Replica

Management
Monitoring
Services

Life-cycle

Management

Description

Manages add/delete
functions for

components
Monitor the performance
of software and

hardware components

Add/delete replicas

Monitor the performance
of software and

hardware components
Add/delete processes
and sensors

Table 1. Reference Model Coverage Table: An example

A reference model coverage table describes which functional modules of the candidate

architecture implement the functionalities of the reference architecture. It is quite possible that
candidate architecture combines several functionalities of reference architecture into one module.

It is also possible that candidate architecture implements additional functions not mentioned in
the reference architecture. But these cannot be captured in this table but included in the candidate

coverage table. For each entry in this table, a description of the interface is also specified.



Basically,thistableenablesanevaluatortoensurethatthecandidatearchitecturecoversall the
functionalitiesspecifiedin thereferencearchitecture.

Thecandidatemodelcoveragetablemapsthecandidatearchitecturefunctionalitiesto the
referencearchitecture'sfunctionalities.Thistableisnecessaryto accountfor thosefunctionalities
thathavenoequivalentfunctionalityin thereferencearchitecture.It isexpectedthatforeachsuch
case,therewouldbeanexplanationindicatingthereasonfor suchadditions.Table2showspart
of acandidatemodelcoveragetableforthecandidatearchitectureinFigure2.It maybenoticed
thatthecandidatearchitecturehasafunctionalitynotincludedintheHUMSreference
architecture.Inaddition,thearchitectureappearstobemoremodularin termsof functionality
thanthereferencearchitecture.

Candidate Architecture layer: Low-level Performance Monitoring

Candidate Model Reference Model Reference Model

Functionality Layer Functionality
Monitor sensor HUMS Kernel Monitoring and

components relocation
Recording HUMS Kernel Monitoring and

component relocation
failures

Reporting
component
failures

Description

Monitors sensor

component's health
Record component
failures

None None Reports failures

Table 2. Candidate Model Coverage Table: An example

In addition to the above coverage tables, the methodology suggests the inclusion of high-level

data-flow and control-flow diagrams to illustrate the interactions among the layers. Due to space
limitations, we have not included example data-flow and control-flow diagrams here.

4.2 Design specification

While the functional specification is intended to describe an overview of the candidate

architecture, the design specification deals with the details of the modules and interactions
between them that make the promised functionality a reality when the architecture is

implemented.

In this paper, we assume that a functionality described in the functional specification may be
implemented using one or more interacting modules. A module is a logical entity and may consist

of a several procedures and functions determined at the time of implementation. But that level of
detail is not available at the time of architectural specification and evaluation. So, in this paper,
the lowest level we refer to is a module.

As mentioned before, one of the challenges that an evaluator faces in evaluating several
architectures from different vendors/bidders is the variety in the terminology, the layers, the

functionalities, and the modules. Our method simplifies this process by including the following

details for the candidate architecture expressed in terms of functionality in the reference

architecture. While the functional specification dealt with the functionality, the design

specification goes further into the module level.



. Notation/terminology. Here, the vendoffbidder needs to provide the names of modules

that implement the named functionality. While the solicitor provides a list of sub-
functionalities needed to achieve certain functionality, the bidder needs to name the

modules in the candidate architecture that implement that functionality. This is necessary

to compare architectures that may use different terminology for the same module. In case,
the candidate architecture implements additional functionality beyond the pre-specified

list, then provision is made to specify those modules.

As an example, consider the data-storage functionality of the reference architecture. The
solicitor has identified the following (Table 3) sub-functionalities needed for buffer-

storage. The bidder/vendor has then identified the names of modules (shown in italics) in
the candidate architecture that achieve the specified functionality. In Table 3, the solicitor

specified four sub-functionalities. The bidder has identified the names of the modules in
the candidate architecture that cover them. In addition, the candidate architecture

provides three more sub-functionalities not specified in the reference architecture.

.

.

Functionality: Data-storage

Sub-functionality (Provided by solicitor)

1. Interfacing with sensor controllers

2. Managing temporary data

3. Managing permanent data

4. Receiving data into buffers
5. Any other sub-functionalities

Name of the module (provided by bidder)

Storage-interface

Buffer mana_,er

File manager

Buffer manager
(i) Buffer-overflow manager

(ii) Buffer reallocation manager

(iii) Buffer error manager

Table 3. Design specification---Notation/terminology: An example

Macro organization. This describes how the components specified in (1) above are
organized and how they interact. For each module, the bidder needs to mention which of

the following types of organization is used:
• Centralized organization (Only one module for the entire system)
• Fully autonomous organization (Several modules independently operating at

different parts of the system)
• Hierarchical (Modules of the component are distributed but they have a

hierarchical control structure

• Fully distributed (Modules of a component are distributed but the distribution is

transparent to the user)
• Other organizations

For example, Table 4 illustrates an example macro organization for the data-storage

functionality of Table 3.

Functionality distribution. In addition to the organizational information provided in (2)
above, the bidder is expected to specify the distribution of the modules in the overall

system. Figure 4 has a sample distribution. While it does not specify the implementation

details, it does provide considerable information to the evaluator about the structure of
the system. For example, it appears from the given diagram that the architecture consists

of clusters of nodes, each node providing either a distinct service or a replicated service.



.

While the figure does not indicate whether LFCI and LFC4 or replicas, it does indicate

that the life-cycle service (LFC) in the system will not be completely be affected by a

single node failure in the system. Whether the functionality provided by LFC 1 is
replicated elsewhere in the system is to be determined only from the performance

specification. For complex systems, it is best to spread the functionalities among several
distribution diagrams. That should be left to the discretion of the bidder.

Interactions among modules. In order to evaluate the modular nature of the design, the

specification should include charts describing the interactions among the modules in

implementing a specific candidate functionality. Similarly, a chart describing the
interactions among modules corresponding to different functionalities at the same layer is

also required. (Due to limited space, we are not including examples here).

Name of the module (provided by bidder)
Storage-interface

Buffer manager

File manager

Buffer manager

Buffer-overflow manager

Buffer reallocation manager

Buffer error manager

Macro -organization

Distributed

Centralized
Distributed

Distributed

Centralized

Hierarchical

Table 4. Design specification---Macro organization: An example

4.3 Performance Specification

This is an important and often neglected part of architectural specification. But since our method

integrates specification and evaluation steps, the performance specification takes an important
role.

The primary performance concerns in HUMS are: scalability, robustness, and flexibility. Hence,
the architectural specification evaluation will concentrate on these three measures. Since the

solicitor knows the primary issues related to each of the measures with respect to his particular
system, we require him to formulate the requirements in terms of questions and scenarios. For
each functionality specified in the functional specification, the solicitor presents questions and
scenarios at the time of solicitation (RFP). The questions and scenarios also help the evaluator(s)

in understanding a proposed architecture to the desired abstraction level. The process forces the

solicitor to formulate his requirements in a more precise manner. The technique is also useful to

the bidder since he knows exactly what the solicitor wants and does not have to guess using the
often-ambiguous requirement documents. We find this technique to be much more useful when

compared to the traditional way where the performance details are hidden in a huge descriptive
text.

To illustrate the efficacy of this method, let us consider the buffering functionality in the

reference architecture. This is part of the HUMS kernel layer. It receives data from the sensor

controllers (via low-level sensor processing) and makes it available to other high-level processes

[ 11]. So it has the data storage and data retrieval as sub-functionalities. In this paper, we consider
only the data storage aspects for illustration. We refer to it as a data storage module.

10
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Figure 4. Module Distribution for Life-cycle Service (LFC): An example functional
distribution

In terms of scalability, HUMS is mainly concerned about the ability to add more sensors, to be

able to handle higher data rates, and to improve the response times. So these concerns are

formulated as part of the design specification in Table 5. Due to space limitation, we have
included only a few of the concerns. The main objective here is to identify the architectural
limitations in terms of different scalability issues.

Similarly, the robustness concerns are illustrated in Table 6. Here, the idea is to identify what

types of failures the architecture can tolerate and what it cannot tolerate. This helps the evaluators
in identifying whether or not failure-handling mechanisms are incorporated in candidate
architecture. Some of the flexibility concerns are included in Table 7.

While most questions in Tables5-7 are phrased as questions with Yes/No responses, some kind of

explanation with the responses is implicit. In addition, other qualitative and/or qualitative

questions may be included as part of the performance specification.

11



Tables of selected scenarios are also to be included for the metrics of concern. For example, in

the case of robustness, one may want to know the consequence of a combination of failures. This

will not be so evident from the simple questions in Table 6. Due to space limitation, we have not
included such tables here.

5. Architectural Evaluation

Once we have the specification of the candidate architectures, the next step is to evaluate the
architectures. Since the specification methodology was developed keeping this step in mind,

evaluation should be fairly straightforward.

As described in section 4, the specification consists of three parts: functional, design, and

performance. So each of these parts need to be carefully evaluated. It is important to evaluate
these three in the respective order since it also indicates the order of importance. An architecture
that does not meet the functional requirement may be rejected immediately even when its design

and performance are noteworthy. Similarly, candidate architecture with good functionality and

design may be rejected due to unacceptable performance. We now give a brief description of the

evaluation process.

5.1 Evaluation of functional specification

Since the main objective of the functional specification is to express the basic functionality
offered by candidate architectures, it should be evaluated in terms of compatibility and

completeness of the offered functionality with respect to the desired (reference) functionality.

Clearly, the layered architecture should provide a broad guideline about the modularity and
flexibility of the overall architecture. Sometimes too many layers may mean significant overhead

and probably performance deficient systems [12]. In addition, the description about the
functionality offered by each layer confirms to the evaluator whether the candidate is to be

evaluated further. The description of the interfaces of each layer helps in this part of the
evaluation.

The coverage information is probably a more formal resource to verify the completeness of the
candidate architecture. Using the reference architecture coverage tables, an evaluator can clearly
decide whether or not the candidate meets the basic functional requirements. In addition, the

candidate coverage tables indicate what additional features the candidate architecture offers. This

is very helpful since often the solicitor may have missed some characteristics that are captured by

the expert bidders.

At the end of this stage of evaluation, the evaluator should be able to have a first-cut at the

candidates. If they don't meet the functional requirements, they are rejected. Otherwise, they go

on to the next stage of evaluation.

5.2 Evaluation of design specification

In this step, the evaluator looks at the some of the design details of the architecture. The main
concerns here are the modularity, organization, and distribution. The modularity of the

architecture may be evaluated based on how the functionality is subdivided further and how each

subfunctionality is divided into modules. While the design should certainly include the

subfunctionalities required by the bidder, the additional sub-functionalities implemented also

12



helpstheevaluatorrateonearchitectureassuperiortotheother.Forexample,inTable3,the
candidatearchitectureincludedthreeadditionalfunctionalitiesforerrorhandlingnotspecifiedin
theoriginalreferencearchitecture.

Theorganizationanddistributionof themodulesisevidentthroughthemacroorganizationand
distributioncharts.Forexample,acentralizedmoduleismoreproneto failuresthanadistributed
module.However,adistributedmodulemayhavehighperformanceoverheadin termsof
communicationandsynchronizationcost.Whiletheactualimpactmaynotbesoevidentjust
fromthedesignspecification,anexperiencedevaluatorcanmakeajudgmentor lookfor more
evidencethroughtheperformancespecification.

Thedistributiondiagramgivesapictorialviewof thedistributionof thefunctionalityand
modules.Forexample,fromFigure4,it isevidentthatthelife-cycleservicesisdistributedall
alongthesystemandnotjustconcentratedatoneplace.Thiscouldbeadistributedand
autonomousorganization.However,if oneservicecomponentisactingasabackupfor theother,
thensomerobustnesscouldbeachieved.Butthesefactsarenotsoevidentfromhere.Onlythe
potentialcanbeevaluatedfromhere.Theinformationin theperformancespecificationcould
eitherconfirmthishypothesisorrefuteit.

In summary,thedesignspecificationfurtherhelpstheevaluatorto makeconclusionsaboutthe
candidatearchitectures.Butmuchis to begainedfromthenextstage---theperformance
specificationevaluation.

5.3 Evaluation of performance specification

Much of the performance-related questions or concerns are to be answered at this stage. Of
course, it is assumed that the solicitor has posed all relevant questions in a way for the evaluator

to rank the architectures.

The information provided in performance specification may be both quantitative and qualitative.

Of course, we expect most quantitative information to be in the form of ranges rather than

absolute point estimates (since this is still at the architectural stage). With each response,
especially when warranted, the bidder is expected to provide an explanation or justification for
the answer provided. These would help the evaluator in assessing the architectures in a specific

perspective. The verbal explanation help the evaluator develop a better picture of the
architecture.

Depending on the importance of different factors (e.g., low communication versus low processing
overhead), the evaluator may have been provided with some weights for different metrics. This
enables the evaluator to arrive at one or more metrics representing the goodness or the suitability

of candidate architecture to the needs of the solicitor. We expect the metrics to be based on

different measures of interest such as sensor scalability, processing scalability, robustness to node

failures, etc. Due to limited space, we do not include the details here.

Similarly, the manner in which a candidate architectures addresses each scenario also gives

insights to an evaluator with respect to its design and performance. (Due to space limitation, we
do not discuss it further here.)

By the end of this step, we assume that the evaluator is able to present both qualitative and

quantitative evaluation of candidate architectures to the solicitor. We expect this step to cut down

13



thenumberof candidatearchitectures,sotheselectedoneswithpotentialcouldbeaskedto
submitthenextlevelof designandperformancedetailsorbuildprototypes.

6. Summary and Future work

In this paper, we proposed a methodology to specify and evaluate architectures. The main feature
of our methodology is that both specification and evaluation are dealt with in an integrated

manner. We divided the specification (and evaluation) into three parts: functional, design, and

performance. Each part has more detailed information than the earlier parts. In addition, by using
this step-wise approach, the evaluator is able to eliminate inappropriate candidate architectures at

an early stage itself.

While the methodology is developed in the context of architectures for health usage and

monitoring systems for avionics, we expect it to be equally applicable for other architectures. At
this stage, the methodology has been discussed with the project sponsors (NASA Langley). So far

it has been applied on some parts of the HUMS. In future, we plan to extend it to the entire
system so that the sponsors may use it in their solicitation and evaluation processes. As we gain

more experience in using the methodology, we plan to revise it and make it more comprehensive
and usable.
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Layer:
Functionality:

Sub-functionality:
Performance Measure:

HUMS Kernel

Buffer-Service

Data Storage

Scalability

Design-related questions:
.(i)

(ii)

(iii)

(iv)

(v)

(vi)
(vii)

(viii)

(ix)
(x)

What is the limit (if any) on the number of sensor controllers a data storage module
can handle?

If there is a limit, which resource(s) is the bottleneck?
Can the limit be extended when the bottleneck resources are increased (in number or

speed)?
What is the limit (if any) on the data rate from sensor controllers a data storage
module can handle?

Is the data rate limited over the cumulative rate (over all sensor controllers) or per
sensor controller?

If there is a limit, which resource(s) is the bottleneck?
Can the limit be extended when the bottleneck resources are enhanced (in number or

speed)?

Can the performance (response time, etc) of the module be improved by increase in
the number of buffers, the number of processors and/or their speed, the number of

data servers (those that manage the buffers), or the number of file servers (those that
save the data for later retrieval) is increased?
What other additional resources can improve the response time?

Can the number of data-storage modules be increased to enhance the data rates, the
number of sensor controllers handled, and the response time?

Table 5. Performance Specification--oScalability Issues
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Layer:

Functionality:
Sub-functionality:
Performance Measure:

HUMS Kernel

Buffer-Service

Data Storage
Robustness

Design-related questions:
(i)

(ii)

(iii)

(iv)
(v)

(vi)

(vii)

What is the impact (if any) of the failure of a sensor controller (process), a buffer
controller, a data server, or a file server on the data-storage module?

What is the impact (if any) of corruption of received data, data in buffers, data in file
servers?

What is the impact (if any) due to overload (i.e., is there a possibility of losing data if

the module can't attend to the incoming data immediately)?

What is the impact (if any) when buffers are full or the secondary storage is full?
What is the impact (if any) of the unavailability (node failure/communication failure)
of the node(s) executing the buffer controller, the data server, or the file server?
Is there a mechanism to handle loss of data between sensor controller and this

module (i.e., sensor controller sent the data, but it never reached this module)?
Is there a mechanism to handle loss of data between buffer controller and data server

Table 6. Performance Specification---Robustness Issues

Layer:
Functionality:

Sub-functionality:
Performance Measure:

HUMS Kernel
Buffer-Service

Data Storage

Flexibility

Design-related questions:
0)

(ii)

Is it possible to replace/modify the following without changing the rest of the

system? If there is an impact, state the impact or changes that need to be carried out

and the extent of the changes.
(a) Sensor controller output data format

(b) Type of sensor controllers (e.g., unintelligent to intelligent or vice versa)
(c) Buffer controller, data server, or file server (e.g., a modified and improved

version is now available)

Is it possible to carry out the following changes without impacting the rest of the
system? If there is an impact, state the impact or changes that need to be carried out

and the extent of the changes.
(a) Increase/decrease

(b) Increase/decrease
(c) Increase/decrease

(d) Increase/decrease

(e) Increase/decrease
(f)

in the number of data storage modules.
in the number of sensor controllers sending data to a module
in the number of data servers and/or file servers
in the number of buffers

in sensor controller output data
Increase/decrease in the load at the node(s) where the buffer controller/data

server/file server are executing

(g) Increase/decrease in the processing speed of the node(s) where the buffer
controller/data-server/file-server are executing

(h) Reallocation of sensor controller output among data storage modules

(i) Other reallocations of data at data servers and file servers

Table 7. Performance Specification---Flexibility Issues
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Introduction

Structural Health, What is it?

• Why is a management system needed?

• Work that has been going on in the

development of such systems.

• Work that we have done over the past year.
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Contents of the Presentation

Functional Specification of the HUMS reference
model

• Design and Implementation of the HUMS kernel

>>Srihari

• Reliability, scalability and flexibility enhancement

mechanisms in the Layered Model

• Architectural Proposals and Evaluation methods

>>Kailash
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HUMS Reference Model
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SpFunctional ecificatlon

Sensors

- Primary data producers.

- Can be analog or digital.

- Emit signals that can be consumer ready or

require further processing.

Could emit in periodic intervals or only during

perceived hazardous conditions.

- Intelligent or dumb.
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Functional Specification, contd.

• Low-Level Processing Layer

- Analog to Digital Conversion

- Signal Transformation

- Simple Sensor fusion (Usually competitive)

- Simple error control

- Complimentary

- Competitive

- Collaborative

• Sensor fusion



Functional Specification, contd.

HUMS Kernel has the following services

- Data Buffeting

- Maintaining Structural component and HUMS

component relationship

- Lifecycle services for managing component lifecycle

• (addition, removal and updating of components)

- Monitoring and relocation services to enhance system

reliability

• (Monitoring for failure, non-optimal performance of HUMS

components)



Functional Specification, contd.

High-Level Processing and Sensor Control

- Complex sensor fusion processes.

- Analyze large quantities of data and store the results of

their analysis.

Application Processes

User Interfaces

- They could be domain-specific systems that perform

further analysis of processed data.

- These processes can have user-interfaces of their own

or there can be a generic user interface.
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The HUMS Kernel

• The objectives of the HUMS kernel are

provided as services to the HUMS systems

- Reliability (Reduce process failures)

- Robustness (Allow processes to react

gracefully during component failure)

- Provide Services for system maintenance

(addition and deletion of components)

- Provide services for access to sensor data
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Kernel Service Interactions

Relocation service

Monitoring Service &

Relationship service

Lifecycle service

Direction of Data flow

Buffering Service

Naming Service

User l
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Monitoring and Relocation Services

Purpose

- Increase the reliability of the services in the

system.

• The Monitoring and Relocation services

consist of the following functionalities

- Polling

- Process Evaluation

- Cloning
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Relationship Service

• Maintains a hierarchy of Structural

components of an aircraft.

• Maintains a relationship of HUMS

components, !he relationships can be
broadly classified into the following

- <Component, Grid>

- <Grid, Sensor>

<Processor, Process>

• Mechanisms for storing and retrieving data.
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• Component

- Provides information about the structural component of

the aircraft and allows component hierarchy to be

maintained.

• Grid

- A Basic unit of interest in an aircraft that exists at the

leaves of the structural component hierarchy.

• Sensor Group

- A collection of sensors that measure the same physical

parameter type (temperature, pressure, etc) in a grid.

• Sensor Type

- Sensors that measure the same physical parameter.
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Sensor

- Identifies uniquely every sensor.

Sensor Controller

- Refers to low-level sensor-controllers that process

signals from the sensors.

Controller Type
- Refers to controllers that handle a particular parameter

type of sensors signals.

Processes

- Application processes or High-level sensor controllers
that perform complex processing sensor signals.

Processor

- Processors in which processes reside.



Buffering Services

• The buffering services provide for sensor

data to be stored so that they can be

accessed under the following conditions:

- When a Process's requirement for data is not in

synch with the emission of data by the sensors.

- When there are multiple consumers for a

producer and vice-versa.

- When historical data is required.
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fo h "q "Per rmance En ancement techm ues _n

the HUMS Reference Model

Efficient design and fabrication.

Duplication or Replication of data and processes.

Hand-shaking between communicating

components (e.g., are you alive messages).

- Each of the above mechanisms has some

advantages and disadvantages.
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Efficient Design and Fabrication

Advantages

- The best method to develop fault-tolerant and

reliable systems.

Disadvantages

- Significant design effort.

- Cost is prohibitive.

- COTS products usually do not conform to the

high reliability requirements of avionics.
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Replication of Components

Replication is achieved through computation

replication and (or) data replication.

A version of replication called N-version

programming is used in software.

Advantages
- Provides reliability over unreliable systems.

Disadvantages

- They involve more computation and communication.

- Not viable in systems that have stringent space and

weight constraints.
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Hand-shaking between

Communicating Components

A reliability enhancement technique to ensure

reliable data transfer between data producers and

consumers.

- They are not feasible for highly periodic real-time data transfer.

• Disadvantage

- They require producers and consumers to be pro-active (i.e., they

should be able to identify loss of messages and respond to queries).

- They result in higher network traffic requiring higher network
bandwidth.



Performance Enhancement at the Sensor Layer

Reliability enhancement mechanisms that can be used,

depend on sensor capabilities and protocol issues.

Case 1: Sensors are simple and communication is simplex.

- Sensors are not concerned about the data reaching the appropriate

destination.

- They are not equipped with capabilities to respond to inquiries or

acknowledgements.

- Do not provide control information or error control mechanisms.

The reliability enhancement mechanisms possible when

this is the case are

- Better fabrication of sensors. This increases sensor cost.

- Replication of sensors. This results in a large number of sensors.



Perf. Enhancement, Sensor Layer, contd.

Case 2: Sensors are complex and communication is duplex

- Digital logic is embedded in the sensors for error control

- Communication is duplex and sensors have the capability to

respond to requests from higher layers.

The reliability enhancement mechanisms possible when
this is the case are

- Better design of sensors. Sensors are a generation more
complex.They should also have buffers to temporarily store data
for retransmission requests. Increases sensor cost and weight.

- Sensors provide control information and respond to A CKS/NACKS
from higher layers. This overhead consumes bandwidth and
effectively reduces the capacity available for the payload

Issues and solutions in both cases involve a balance to be

achieved among cost, performance and space/weight.
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Building Reliable Systems
Structural Health & Usage Monitoring Systems?

Component Reliability

- Identify/Isolate h/w failures

• Distributed Architecture

Communication Reliability

- Identify/Reduce transmission losses

• Reliable Protocol

Process & Data Reliability

- Identify/Isolate/Rectify s/w & signal failures

• HUMS Kernel
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The HUMS Kernel
Data Distribution & Replication

[ Direction of Data flow l_HUMS kernel I

Monitoring Service &
Relocation service

Buffering Service

Relationship service
Naming Service

I Lifecycle service

Fault Detection, Isolation

and Correction

User Fault Detection & Process

Life cycle Management
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Buffering Services
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Introduction

• Introduction

• The HUMS Reference Model

• The HUMS Kernel

Reliability & Scalability Issues in the
HUMS kernel

• Architectural Proposal



Reference Model

• Motivation

Provide a template for Architecture description.

Communicate System Requirements for

invitation of Architecture Proposals.

Provide a Baseline Evaluation criteria.

Encourage a common Architecture Description

Language.
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Reference Model

User Interface

I Application Software

A

User - Service Interface _
/

High Level Processing

and control

HUMS Kernel Services

User/Application

Processing

Service - Signal Interface I

Low Level Processing and

Control

Physical Layer

Low Level HW/Physical Layer
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The HUMS Kernel

• The objectives of the HUMS kernel are

provided as services to the HUMS systems

Reliability (Reduce process failures)

Robustness (Allow processes to react

gracefully during component failure)

- Provide Services for system maintenance

(addition and deletion of components)

- Provide services for access to sensor data
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The HUMS Kernel, Interactions

• Direction of Data flow

Monitoring Service &Relocation service

I Buffering Service I

Relationship service

Lifecycle service

Naming Service



Monitoring and Relocation Services

Purpose

- Increase the reliability of the services in the

system.

Polling & Evaluation

Cloning & Relocation

• The Monitoring and Relocation services

consist of the following functionalities
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Polling and Evaluation
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Relationship Service

• Maintains a hierarchy of Structural
components of an aircraft.

Maintains a relationship of HUMS
components, the relationships can be
broadly classified into the following

- <Component, Grid>

- <Grid, Sensor>

- <Processor, Process>

• Mechanisms for storing and retrieving data.
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Relationship Access Mechanism
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Buffering Services

The buffering services provide for sensor

data to be stored so that they can be

accessed under the following conditions:

- When a Process's requirement for data is not in

synch with the emission of data by the sensors.

- When there are multiple consumers for a

producer and vice-versa.

- When historical data is required.



I I I [ I I I f I I I I _ I I I I

lS_ata Buffering

B

U

F S

E E

R R

R V

I I

C
G E

SC - Sensor Controllers ]

I RF - Remote File

Data 1 ._
v

Data 2

R I

D I

Data 20

.!l_I
I
|

!R
D

I

RDS - Buffers ]

S - Sensors



!

A I

N



Performance Enhancement techniques in
the HUMS Reference Model

Efficient design and fabrication.

Duplication or Replication of data and processes.

Hand-shaking between communicating

components (e.g., are you alive messages).

- Each of the above mechanisms has some

advantages and disadvantages.



Performance Enhancement - Kernel Layer

Life• cycle Service

- Reliability Issues

• The process controller is replicated in processors

that have processes whose lifecycle have to be
monitored.

• May consist of the cloner and the redirection

service. These services can be replicated and

monitored for reliability enhancement.

- Flexibility issues

• Simple (Bootstrapping and process restarting).

• Complex (Processor utilization, cloning, redirection)



Perf. Enhancement: Kernel Layer, contd.

• Monitoring and Relocation service

- Reliability issues
• When the number of critical components in the

system increases, the load on the monitoring service
also increases.

• The monitoring service can be replicated at different
processors. This provides the following advantages:

- Enhances the reliability of the monitoring service.

- Distributes the monitoring load.

Flexibility issues
• Simple (Log process failures).

• Complex (Monitoring, Adoption, Relocation).



Perf. Enhancement: Kernel Layer, contd.

• Relationship service

- Reliability and Access time Issues

• Replicating the data in multiple locations can

enhance reliability. In addition, relationship service

can be monitored for increased reliability.

• Replicating relationships of interest nearer to where

they are frequently accessed. This would increase

the response time of the relationship service.



Perf. Enhancement: Kernel Layer, contd.

• Buffering service (Service and the Buffers)

- Reliability and Data Access time Issues

• The Buffering service can be n-replicated and the

leader (active service) can be decided by vote.

• Different buffeting services can can cater to
different sets of sensor controllers.

• The buffers can be distributed in the system and

data from can be replicated in more than one buffer.

• Distribution of data decreases data retrieval time,

since search space for data retrieval is less
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A General Performance Scenario

I Buffering Service
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Architectural Proposal
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Architectural Proposal, contd.

Cluster Organization: A cluster might consist of
the following components

- A set of processors with frequently interacting

processes.

- A cluster would also have buffers that contain data that

is frequently accessed by the processes within the
cluster.

- Part of the relationship service of interest to the
processes can be replicated in the cluster.

- If the processes in a critical to the system the
monitoring services can be replicated in that clusters.

- Storage devices that store data analyzed by the

processes.



Architectural Proposal, contd.

Advantages of clustering mechanism
- It ensures that data from the sensors are stored with

high degree of reliability (because of data distribution
and replication) in the buffers.

- Provision of clusters allows heterogeneous sub-systems

to be connected to the FDDI backplane.

- Increases system performance because of data locality

(data required by the applications in the cluster are
available in buffers located within the cluster)

- Distributes monitoring load and allows monitoring

heterogeneity.

- Failure of clusters result in partial failures. Failure of a
cluster does not affect other clusters.
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Future Work

• Formal specification methods in HUMS

• Exhaustive, HUMS Evaluation

methodology using

- Scenarios

- Check lists

• Assets distribution among stakeholders in
HUMS.
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Example SHM Systems

SHM Syslem developed as paff of ASIP
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Characteristics of HUMS

• Scalability

• Openness

• Flexibility

• Robustness

• Extendibility

• Incorporating legacy systems

• Intelligent monitoring
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Multi " Archite *"-laer

Multi-tier architectures are useful in obtaining scalability,

availability, security, and integration with legacy systems.

The following diagram (Menace and Almeida 2000)

describes a typical three-tier architecture.
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Use of Clusters for Scalability and Robustness

A group of nodes/processors and resources make up a cluster.

Members within a cluster mainly communicate via message passing.

A cluster offers an interface that includes services (e.g.,
storing/retrieving data, data processing/analysis).

Clusters have the advantage of scalability and fault-tolerance at the
same time being cost effective.

The idea of cluster computing is being used extensively in the
commercial world in applications such as E-commerce and in scientific
computing applications with large computational problems.

Scalability, transparency, and reliability (or availability) are the main
goals of a cluster software

The concept should be equally appealing to HUMS architects and

designers
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More Tools for Scalability

Cloning: The same software is run on several

processors/nodes.

The set of clones supporting a certain service are referred

to as RACS (Reliable array of cloned services).

A clone may be implemented in several ways (i) the data is

shared but the processing is independent or (ii) no data

sharing through data replication

Partitioning: the data and/or functionality of a system is

divided among several nodes

The set of partitions supporting a certain service are

referred to as RAPS (Reliable aray of partitioned services)
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Proposed Distributed HUMS Reference Model

On-flight System

I On-nightSystemi" _LOroondsystem]

High-level sensor interface

Low-level sensor interface

User Interface

Application software

High-level Sensor

Processin_and Control

HUMS kernel Services

NW & OS Services

I Low-level Sensor

Processilg and Control

Sensors
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Proposed Distributed HUMS Reference Model

Ground System

User Interface

High-level P&C interface I

Low-level P&C interface

Application software

High-level Data Processing

and Iontrol

HUMS kernel Services

NW & OS Services

ILow-level Data Processing

an!C°ntr°l

Flight/Historical data



HUMS Kernel Modules

Kernel Interface
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HUMS Kernel--Services

Provides system services specific to HUMS, and not

generally provided by a general OS

It provides distributed system functionality needed by the
HUMS architectures

In our preliminary, we identified four useful kernel
services:

* Naming Service

* Lifecycle Service

* Relationship Service

* Relocator Service
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Evaluation of HUMS Architectures: What is

Required?
1. A model of the architecture

2. A schematic illustration of the interaction between

components or blocks in the architecture, similar to an
event-diagram

3. Processing and communication load induced by the
components and blocks on the system

4. Expected resources to be available in the underlying

system

5. What are the questions to be answered by the architecture?

Typical questions may be:

• The number of sensors that the architecture can

support (i.e., identifying sustained peak loads and the
bottleneck components.)

• Response time and/or throughput of services/system
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Evaluation of HUMS Architectures: Who is

Involved?

• Intended users: To describe anticipated patterns of use
of the system

• System designers: To identify the interaction between
the components in terms of which module invokes which
modules and how frequently

• System implementers: To specify the resource
requirements for each module in system

• Configuration planners: To translate the system-
independent resource requirements into configuration-
dependent terms

• Performance analysts: To synthesize the information
and construct an analytical model to answer the questions.
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Evaluation of HUMS Architectures: The

Steps

Modeling cycle: Validation, projection, and
verification

Understanding the objectives

Workload characterization

• Sensitivity analysis: Robustness ofthe

results to the assumptions in question



Scalability Analysis

Synonymous with bottleneck analysis.

One of the primary reasons a system cannot scale up is
that while there is one bottleneck component in the

system, we are attempting to scale up another non-
bottleneck component.

In that sense, while the cost of the scale up has
increased results have not improved to the same extent.

It could also be related to the nature of the application
that dictates the ceiling on the performance (e.g.,

throughput) of a system. For example, when an
application is highly sequential in nature, adding extra

processors is not going to significantly improve its
response time.
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More on Scalability

When we say that a piece of software must be scalable, we

mean that it must be capable of being deployed efficiently
at both large and small scales.

Alternately, an architecture is scalable when it provides
adequate service levels even when the workload increases
above expected levels (Scaling up and Scaling out)

In addition, over time, we must expect that it should be
possible to add capacity to either support more users, or
enhance the quality of service, or both.

If added resources do not increase the scale of operation
(number of users, quality of service, or both) in proportion
to their cost, then the system will become uneconomical
(or infeasible) to operate. This is the problem of scalability.
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Limiting Factors of Scalability

While multiprocessors are a tool to scaling a system,
overhead of distributed/parallel processing limits its utility.

Sources of overhead:

* Time to communicate and/or synchronize

* Load imbalance

* Additional computations

Possible culprits:

* Inefficient underlying system support (BW, MIPS,
etc.)

* Inherent sequential nature of a problem

* Poor algorithm design

* Architectural limitations



Measures of Scalability

P-scalability - [Power2/Cost2]/[ Powerl/COst 1]

= [)_2/( T2C2)]][)_1/( TIC1)]

G-scalability- F(QoS 2, C2)]F(QoS 1, C1)

Isospeed Scalability- T(W1,P1)/T(W2,P2) where W is

useful work done, P is the resource size such as the number

of processors, and T is a performance metric such as

response time or time for completion.

Average-speed- W/(W+T0(W,P)) where To is the

overhead due to distribution or parallelism
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Scenario-based Evaluation of HUMS

Architectures

Scenarios illustrate the types of activities the system must

support and the types of changes designers and users

expect the system to undergo over time.

Direct or indirect scenarios

Enables better understanding of the different needs of the

stakeholders and to recognize in the early stages of design

whether or not the proposed architecture meets them.



Scenario-based Evaluation---Examples

Addition of new sensors to existing components

Inclusion of new components for sensing.

Handling sensor failures (fail-stop)

Handling misbehaved sensors (e.g., spurious
generation of data)

Replacing existing sensors with different ones

Failure of processors

Both synchronous and asynchronous sensor outputs

Lost messages

Etc.



Robustness

Def: The measure or extent of the ability of a system to

continue to function despite the existence of faults in

subsystems or components.

Other related terms are: Reliability, Accessibility,

Accuracy, Correctness, Availability

In multi-tier (or hierarchical) architectures, we should

evaluate the robustness of each layer. Certainly, the

robustness offered by lower layers, affects the robustness

of higher layers. The robustness at the user-interface level

is what is the "system robustness"



Sample Robustness Measures in HUMS

RO 1: Probability with which a component's (e.g., left

wing, engine) status is recorded in the storage (applicable

at lower-layers)

RO2: Probability with which a higher-layer algorithm is

guaranteed to receive sensor inputs within a given time

interval (Tests timeliness)

RO3: Probability with which the status of at least k out of

m required components is available (applicable at middle

and higher layers)

Other metrics (at component, subsystem, service, or

system level): Rate of failures, Mean-time-between-

failures, Mean-time-to-recover
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Extendibility

Def: The ease with which a system or

component can be modified to increase its

capacity or functionality.

Functional extendibility

• Network extendibility

• Processor extendibility

• Storage extendibility

• Sensor extendibility



Flexibility

Often, definitions of flexibility and extendibility overlap

IEEE Def.: Flexibility is the ease with which a system or
a component can be modified for use in applications or
environments other than those it was designed for.

Example scenarios for HUMS:

• Can a system designed to handle periodic sensor signals be
modified to handle aperiodic sensor signals?

• Can a system currently monitoring a fixed set of variables, be
modified to handle additional variables?

• Can a system with functions that are currently performed on
ground be modified so they can be performed on-flight?

• Can a system that currently requires its sensors to
asynchronously send signals to a processor be modified so that
the processor could now selectively poll them for input?
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Future Work

Identify paradigms that are useful building blocks for
HUMS systems.

Develop a framework by which a HUMS architecture can
be described to enable its evaluation.

Define quantitative and qualitative metrics of HUMS
architecture evaluation.

Develop methods to evaluate the metrics given an
architectural description.

Use the methods to evaluate some of the existing
architectures and identify the bottlenecks.

Develop a suite of model architectures using the above

techniques.


